scispace - formally typeset
Search or ask a question

Showing papers in "Faraday Discussions in 2015"


Journal ArticleDOI
TL;DR: The results illustrate that plasma technology is quite promising for CO2 conversion, but more research is needed to better understand the underlying mechanisms and to further improve the capabilities.
Abstract: This paper discusses our recent results on plasma-based CO2 conversion, obtained by a combination of experiments and modeling, for a dielectric barrier discharge (DBD), a microwave plasma and a packed bed DBD reactor. The results illustrate that plasma technology is quite promising for CO2 conversion, but more research is needed to better understand the underlying mechanisms and to further improve the capabilities.

183 citations


Journal ArticleDOI
TL;DR: A novel approach involving additives of low ionization potential to tailor the electron energies to the vibrational excitation regime is proposed, indicating that the intrinsic electron energies are higher than is favorable for preferential vibratory excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry to dominate.
Abstract: The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrations. Simple molecular physics considerations are presented to explain potential dissociation pathways in plasma and their effect on energy efficiency. A common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures (exceeding 104 K) and conversion degrees (up to 30%), respectively. The results are interpreted on a basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favorable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry to dominate. The highest observed energy efficiencies of 45% indicate that non-equilibrium dynamics had been at play. A novel approach involving additives of low ionization potential to tailor the electron energies to the vibrational excitation regime is proposed.

156 citations


Journal ArticleDOI
TL;DR: A classical effective model, so called Quantum Corrected Model (QCM), that has been introduced to correctly describe the main features of optical transport in plasmonic nanogaps is considered and its implementation is extended to include nonlocal effects and address practical situations involving different materials and temperatures of operation.
Abstract: The optical response of plasmonic nanogaps is challenging to address when the separation between the two nanoparticles forming the gap is reduced to a few nanometers or even subnanometer distances. We have compared results of the plasmon response within different levels of approximation, and identified a classical local regime, a nonlocal regime and a quantum regime of interaction. For separations of a few Angstroms, in the quantum regime, optical tunneling can occur, strongly modifying the optics of the nanogap. We have considered a classical effective model, so called Quantum Corrected Model (QCM), that has been introduced to correctly describe the main features of optical transport in plasmonic nanogaps. The basics of this model are explained in detail, and its implementation is extended to include nonlocal effects and address practical situations involving different materials and temperatures of operation.

142 citations


Journal ArticleDOI
TL;DR: A study of light-matter strong coupling involving three molecules with very different photo-physical properties is reported, which shows that the excitation spectra are very different from the static absorption of the coupled systems.
Abstract: We report here a study of light–matter strong coupling involving three molecules with very different photo-physical properties. In particular we analyze their emission properties and show that the excitation spectra are very different from the static absorption of the coupled systems. Furthermore we report the emission quantum yields and excited state lifetimes, which are self-consistent. The above results raise a number of fundamental questions that are discussed and these demonstrate the need for further experiments and theoretical studies.

117 citations


Journal ArticleDOI
TL;DR: Accurate heterogeneous crystal nucleation rates were determined from the induction time distributions on a 1 ml scale for racemic diprophylline in two solvents, which shows the difference in nucleation behaviour in the twosolvents originates from the energy barrier for nucleation, which is much higher in the solvent in which induction times are much longer.
Abstract: A large variation is observed in induction times measured under equal conditions in 1 ml solutions. Ruling out experimental errors, this variation originates from the nucleation process. The induction time distribution is explained by the stochastic nature of nucleation if the number of nuclei formed is approaching 1 per vial. Accurate heterogeneous crystal nucleation rates were determined from the induction time distributions on a 1 ml scale for racemic diprophylline in two solvents. The difference in nucleation behaviour in the two solvents originates from the energy barrier for nucleation, which is much higher in the solvent in which induction times are much longer. In addition the pre-exponential factor for the crystal nucleation rate in both solvents is rather low compared to predictions using Classical Nucleation Theory. Unfortunately, concentration and surface characteristics of the effective heterogeneous particles are not known which clouds a further molecular interpretation.

106 citations


Journal ArticleDOI
TL;DR: Evaluating the efficiency of two different materials as biocathodes and their respective output in terms of electrosynthesis found that carbon conversion efficiency to acetate was higher for VC-IS than the graphite rod and coulombic efficiency was higher with the second electrode combination.
Abstract: In the direction of generating value added chemicals from carbon dioxide (CO2) reduction through microbial electrosynthesis (MES), considering the crucial impact of the electrode material for the biofilm development and electron delivery, an attempt was made in this study to evaluate the efficiency of two different materials as biocathodes and their respective output in terms of electrosynthesis. The electrode material is a key component in the MES process. Several electrodes such as platinum, graphite foil, dimentionally stable anode (DSA) and graphite rod, and VITO-CoRE™ derived electrodes were tested for their suitability for ideal electrode combination in a three electrode cell setup. Bicarbonates (the dissolved form of CO2) was reduced to acetate by a selectively developed biocathode under a mild applied cathodic potential of −400 mV (vs. SHE) in 500 mL of single chamber MES cells operating for more than four months. Among the two electrode combinations evaluated, VITO-CoRE™-PL (VC-IS, plastic inert support) as the cathode and VITO-CoRE™-SS (VC-SS, stainless steel metal support) as the counter electrode showed higher production (4127 mg L−1) with a volumetric production rate of 0.569 kg per m3 per d than the graphite rod (1523 mg L−1) with a volumetric production rate of 0.206 kg per m3 per d. Contrary to the production efficiencies, the coulombic efficiency was higher with the second electrode combination (40.43%) than the first electrode combination (29.91%). Carbon conversion efficiency to acetate was higher for VC-IS (90.6%) than the graphite rod (82.0%).

103 citations


Journal ArticleDOI
TL;DR: This study takes heat-assisted magnetic recording as a case study for plasmonic technology and shows that a titanium nitride antenna satisfies the requirements for an optically efficient, durable near field transducer paving the way to the next-generation data recording systems.
Abstract: The key problem currently faced by plasmonics is related to material limitations. After almost two decades of extreme excitement and research largely based on the use of noble metals, scientists have come to a consensus on the importance of exploring alternative plasmonic materials to address application-specific challenges to enable the development of new functional devices. Such a change in motivation will undoubtedly lead to significant advancements in plasmonics technology transfer and could have a revolutionary impact on nanophotonic technologies in general. Here, we report on one of the approaches that, together with other new material platforms, mark an insightful technology-driven era for plasmonics. Our study focuses on transition metal nitrides as refractory plasmonic materials that exhibit appealing optical properties in the visible and near infrared regions, along with high temperature durability. We take heat-assisted magnetic recording as a case study for plasmonic technology and show that a titanium nitride antenna satisfies the requirements for an optically efficient, durable near field transducer paving the way to the next-generation data recording systems.

99 citations


Journal ArticleDOI
TL;DR: A new in operando approach for the investigation of heterogeneous processes at solid/liquid interfaces with elemental and chemical specificity which combines the preparation of thin liquid films using the meniscus method with standing wave ambient pressure X-ray photoelectron spectroscopy is described.
Abstract: We describe a new in operando approach for the investigation of heterogeneous processes at solid/liquid interfaces with elemental and chemical specificity which combines the preparation of thin liquid films using the meniscus method with standing wave ambient pressure X-ray photoelectron spectroscopy [Nemsak et al., Nat. Commun., 5, 5441 (2014)]. This technique provides information about the chemical composition across liquid/solid interfaces with sub-nanometer depth resolution and under realistic conditions of solution composition and concentration, pH, as well as electrical bias. In this article, we discuss the basics of the technique and present the first results of measurements on KOH/Ni interfaces.

98 citations


Journal ArticleDOI
TL;DR: Calculations reveal that benzotriazole is able to bond with oxide-free and oxidized copper surfaces and on both of them it bonds significantly stronger to coordinatively unsaturated Cu sites, which suggests that Benzotrizole is ability to passivate the reactive under-coordinated surface sites that are plausible microscopic sites for corrosion attack.
Abstract: The bonding of benzotriazole—an outstanding corrosion inhibitor for copper—on reduced and oxidized copper surfaces is discussed on the basis of density functional theory (DFT) calculations. Calculations reveal that benzotriazole is able to bond with oxide-free and oxidized copper surfaces and on both of them it bonds significantly stronger to coordinatively unsaturated Cu sites. This suggests that benzotriazole is able to passivate the reactive under-coordinated surface sites that are plausible microscopic sites for corrosion attack. Benzotriazole can adsorb in a variety of different forms, yet it forms a strong molecule–surface bond only in deprotonated form. The bonding is even stronger when the deprotonated form is incorporated into organometallic adcomplexes. This is consistent with existing experimental evidence that benzotriazole inhibits corrosion by forming protective organometallic complexes. It is further shown that adsorption of benzotriazole considerably reduces the metal work function, which is a consequence of a large permanent molecular dipole and a properly oriented adsorption structure. It is argued that such a pronounced effect on the work function might be relevant for corrosion inhibition, because it should diminish the anodic corrosion reaction, which is consistent with existing experimental evidence that benzotriazole, although a mixed type inhibitor, predominantly affects the anodic reaction.

97 citations


Journal ArticleDOI
TL;DR: The first experimental results from the Relativistic Electron Gun for Atomic Exploration (REGAE) are given that show the significantly reduced multiple electron scattering problem in this regime, which opens up micron scale systems, notably solution phase chemistry, to atomically resolved structural dynamics.
Abstract: The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic Exploration (REGAE) are given that show the significantly reduced multiple electron scattering problem in this regime, which opens up micron scale systems, notably solution phase chemistry, to atomically resolved structural dynamics.

95 citations


Journal ArticleDOI
TL;DR: Surface analysis by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy and scanning tunnelling microscopy has been applied to provide new insight on Mo effects on the composition and nanostructure of the passive films grown in sulfuric acid on well-controlled Fe-17Cr-14.3Mo(100) austenitic stainless steel single crystal surfaces.
Abstract: Surface analysis by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy and scanning tunnelling microscopy has been applied to provide new insight on Mo effects on the composition and nanostructure of the passive films grown in sulfuric acid on well-controlled Fe–17Cr–14.5Ni–2.3Mo(100) austenitic stainless steel single crystal surfaces. A duplex hydroxylated oxide matrix, 1.8–1.9 nm thick, is formed with a strong partition between Cr(III) and Fe(III) in the inner and outer layers, respectively. Cr(III) is increasingly enriched by preferential iron oxide dissolution upon passivation and ageing. Ni, only present as oxide traces in the film, is enriched in the alloy underneath. Mo, mostly present as Mo(IV) in the Cr-rich inner layer prior to anodic polarisation, becomes increasingly enriched (up to 16% of cations) mostly as Mo(VI) in the Fe-rich outer layer of the passive film, with ageing promoting this effect. Metallic Mo is not significantly enriched below the passive film produced from the native oxide covered surface. Mo does not markedly impact the nanogranular morphology of the native oxide film nor its local thickness variations assigned to substrate site effects on Cr(III) enrichment. Site specific preferential passivation still takes place at the (native) oxide-covered step edges of the alloy surface, and transient dissolution remains preferentially located on the terraces. Nanostructures, possibly Mo-containing, and healing local depressions formed by transient dissolution during passivation, appear as a specific effect of the Mo presence. Another Mo effect, observed even after 20 h of passivation, is to prevent crystallisation at least in the Fe-rich outer part of the passive film where it is concentrated mostly as Mo(VI) (i.e. molybdate) species.

Journal ArticleDOI
TL;DR: It is demonstrated that even if all of the conventional loss mechanisms, caused by phonons, electron-electron interactions, and interface roughness scattering, were eliminated, the maximum attainable degree of confinement and the loss accompanying it would not change significantly compared to the best existing plasmonic materials, such as silver.
Abstract: We show that electric field confinement in surface plasmon polaritons propagating at metal/dielectric interfaces enhances the loss due to Landau damping, which effectively limits the degree of confinement itself. We prove that Landau damping, and associated with it surface collision damping, follow directly from the Lindhard formula for the dielectric constant of a free electron gas. Furthermore, we demonstrate that even if all of the conventional loss mechanisms, caused by phonons, electron–electron interactions, and interface roughness scattering, were eliminated, the maximum attainable degree of confinement and the loss accompanying it would not change significantly compared to the best existing plasmonic materials, such as silver.

Journal ArticleDOI
TL;DR: The focus is on the state of the art of cells, stacks and systems,Thermodynamics, performance and degradation are addressed and remaining challenges and potential application of the technology are discussed from an industrial perspective.
Abstract: Production of fuels and chemicals from steam and/or CO2 with solid oxide electrolysis cells (SOEC) and electricity have attracted considerable interest recently. This paper is an extended version of the introductory lecture presented at the first Faraday Discussions meeting on the subject. The focus is on the state of the art of cells, stacks and systems. Thermodynamics, performance and degradation are addressed. Remaining challenges and potential application of the technology are discussed from an industrial perspective.

Journal ArticleDOI
TL;DR: A single-molecule tool called CoPro (concentration of proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells is presented, validated using realistic simulations of complex multiple compartment cell types.
Abstract: We present a single-molecule tool called the CoPro (concentration of proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells, validated using realistic simulations of complex multiple compartment cell types. We demonstrate its utility experimentally on model Escherichia coli bacteria and Saccharomyces cerevisiae budding yeast cells, and use it to address the biological question of how signals are transduced in cells. Cells in all domains of life dynamically sense their environment through signal transduction mechanisms, many involving gene regulation. The glucose sensing mechanism of S. cerevisiae is a model system for studying gene regulatory signal transduction. It uses the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted genes in the presence of elevated extracellular glucose concentrations. We fluorescently labelled Mig1 molecules with green fluorescent protein (GFP) via chromosomal integration at physiological expression levels in living S. cerevisiae cells, in addition to the RNA polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and nucleus compartments on a cell-by-cell basis under physiological conditions. These estimates indicate a ∼4-fold shift towards higher values in the concentration of diffusive Mig1 in the nucleus if the external glucose concentration is raised, whereas equivalent levels in the cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This compares with Nrd1 which is not involved directly in glucose sensing, and which is almost exclusively localized in the nucleus under high and low external glucose levels. CoPro facilitates time-resolved quantification of protein concentrations in single functional cells, and enables the distributions of concentrations across a cell population to be measured. This could be useful in investigating several cellular processes that are mediated by proteins, especially where changes in protein concentration in a single cell in response to changes in the extracellular chemical environment are subtle and rapid and may be smaller than the variability across a cell population.

Journal ArticleDOI
TL;DR: Increased catalytic activity of the corrosion product layer, either from the accumulated impurities or from the Mg oxy-hydroxide itself, is shown to have a minor influence on the anodic HE observed on dissolving Mg at high anodic current densities and potentials.
Abstract: The increase in the rate of hydrogen evolution (HE) on dissolving Mg surfaces with increasing anodic current density or potential, which is sometimes called the negative difference effect, has been the topic of much discussion in recent years. A review of the very recent contributions to this subject is given in this paper. Increased catalytic activity of the corrosion product layer, either from the accumulated impurities or from the Mg oxy-hydroxide itself, is shown to have a minor influence on the anodic HE observed on dissolving Mg at high anodic current densities and potentials. Al exhibits similar characteristics during anodic polarization in concentrated HCl, although the anodic HE rate on Al is less than on Mg. Possible mechanisms for the anodic hydrogen are provided and implications in the area of intergranular corrosion and environmental cracking are discussed.

Journal ArticleDOI
TL;DR: Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion.
Abstract: As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many talented scientists all over the world have extended our knowledge of the nanoscale and many microscopic mechanisms previously hidden by ensemble averaging.

Journal ArticleDOI
TL;DR: The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings, and a mechanism is proposed for the formation of these protective layers.
Abstract: Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.

Journal ArticleDOI
TL;DR: A set of 12 Principles, based on the acronym CO2 CHEMISTRY, are introduced, intended to form a set of criteria for assessing the viability of different processes or reactions for using CO2 as a feedstock for making organic chemicals.
Abstract: This paper introduces a set of 12 Principles, based on the acronym CO2 CHEMISTRY, which are intended to form a set of criteria for assessing the viability of different processes or reactions for using CO2 as a feedstock for making organic chemicals. The principles aim to highlight the synergy of Carbon Dioxide Utilisation (CDU) with the components of green and sustainable chemistry as well as briefly pointing out the connection to the energy sector.

Journal ArticleDOI
TL;DR: The liquid nature of the clusters of the protein lysozyme are demonstrated and it is found that the cluster's size is insensitive to variations of pH and ionic strength, and a hypothesis put forth by theory that clusters primarily consist of transient protein oligomers is tested.
Abstract: The two-step mechanism of nucleation of crystals in solutions posits that the formation of crystal nuclei occurs within structures of extended lifetimes, in which the nucleating solute is at high concentration. The validity of this mechanism has been demonstrated for proteins, small-molecule organic and inorganic materials, colloids, and polymers. Due to large molecule sizes, proteins are an ideal system to study the details of this nucleation pathway, in particular the formation mechanisms of the nucleation precursors and the associated physico-chemical rules. The precursors of protein crystal nuclei are protein-rich clusters of sizes ∼100 nm that contain 10 000–100 000 molecules and occupy less than 10−3 of the total solution volume. Here we demonstrate, using oblique illumination microscopy, the liquid nature of the clusters of the protein lysozyme and reveal their inhomogeneous structure. We test a hypothesis put forth by theory that clusters primarily consist of transient protein oligomers. For this, we explore how varying the strength of the Coulomb interaction affects the cluster characteristics. We find that the cluster’s size is insensitive to variations of pH and ionic strength. In contrast, the addition of urea, a chaotropic agent that leads to protein unfolding, strongly decreases the cluster size. Shear stress, a known protein denaturant, induced by bubbling of the solutions with an inert gas, elicits a similar response. These observations support partial protein unfolding, followed by dimerization, as the mechanism of cluster formation. The amide hydrogen–deuterium exchange, monitored by nuclear magnetic resonance, highlights that lysozyme conformational flexibility is a condition for the formation of the protein-rich clusters and facilitates the nucleation of protein crystals.

Journal ArticleDOI
TL;DR: In this paper, it was shown that the same substrates and the same nonlocal dielectric environments that boost spontaneous emission, also inhibit Forster energy transfer between donor and acceptor molecules doped into a thin polymeric film.
Abstract: Optical cavities, plasmonic structures, photonic band crystals and interfaces, as well as, generally speaking, any photonic media with homogeneous or spatially inhomogeneous dielectric permittivity (including metamaterials) have local densities of photonic states, which are different from that in vacuum. These modified density of states environments are known to control both the rate and the angular distribution of spontaneous emission. In the present study, we question whether the proximity to metallic and metamaterial surfaces can affect other physical phenomena of fundamental and practical importance. We show that the same substrates and the same nonlocal dielectric environments that boost spontaneous emission, also inhibit Forster energy transfer between donor and acceptor molecules doped into a thin polymeric film. This finding correlates with the fact that in dielectric media, the rate of spontaneous emission is proportional to the index of refraction n, while the rate of the donor–acceptor energy transfer (in solid solutions with a random distribution of acceptors) is proportional to n−1.5. This heuristic correspondence suggests that other classical and quantum phenomena, which in regular dielectric media depend on n, can also be controlled with custom-tailored metamaterials, plasmonic structures, and cavities.

Journal ArticleDOI
TL;DR: Films incorporating Mn(i) bipyridine complexes have significantly improved selectivity towards CO2, with CO : H2 ∼ 1 at -1.4 V vs. SCE, exceeding that for the previously reported /MWCNT/Nafion electrode.
Abstract: Immobilization of [Mn(bpy)(CO)3Br], (1) and [Mn(bpy(tBu)2)(CO)3Br] (2, where (bpy(tBu)2) = 4,4′-di-tert-butyl-2,2′-bipyridine) in Nafion/multi-walled carbon nanotubes (MWCNT) on glassy carbon yielded highly active electrodes for the reduction of CO2 to CO in aqueous solutions at pH 7. Films incorporating 2 have significantly improved selectivity towards CO2, with CO : H2 ∼ 1 at −1.4 V vs. SCE, exceeding that for the previously reported 1/MWCNT/Nafion electrode. Furthermore, we report the synthesis and subsequent electrochemical characterization of two new substituted Mn(I) bipyridine complexes, [Mn(bpy(COOH)2)(CO)3Br] (3) and [Mn(bpy(OH)2)(CO)3Br] (4) (where (bpy(COOH)2) = 4,4′-di-carboxy-2,2′-bipyridine and (bpy(OH)2) = 4,4′-di-hydroxy-2,2′-bipyridine). Both 3 and 4 were found to have some activity towards CO2 in acetonitrile solutions; however once immobilized in Nafion membranes CO2 reduction was found to not occur at significant levels.

Journal ArticleDOI
TL;DR: This article will analyse how the most successful plasmonics applications are capitalizing on five key strengths of metallic nanostructures to project where the field may be moving next.
Abstract: Nanoplasmonics or nanoscale metal-based optics is a field of science and technology with a tremendously rich and colourful history. Starting with the early works of Michael Faraday on gold nanocolloids and optically-thin gold leaf, researchers have been fascinated by the unusual optical properties displayed by metallic nanostructures. We now can enjoy selecting from over 10 000 publications every year on the topic of plasmonics and the number of publications has been doubling about every three years since 1990. This impressive productivity can be attributed to the significant growth of the scientific community as plasmonics has spread into a myriad of new directions. With 2015 being the International Year of Light, it seems like a perfect moment to review some of the most notable accomplishments in plasmonics to date and to project where the field may be moving next. After discussing some of the major historical developments in the field, this article will analyse how the most successful plasmonics applications are capitalizing on five key strengths of metallic nanostructures. This Introductory Lecture will conclude with a brief look into the future.

Journal ArticleDOI
TL;DR: Changing the porosity of the support structure shows a significant change in both the diffusion resistance and low frequency concentration resistance when applying current, showing that diffusion limitations cannot be neglected for SOCs operated in the EC-mode.
Abstract: Operation of a Ni–YSZ electrode supported Solid Oxide Cell (SOC) was studied in both fuel cell mode (FC-mode) and electrolysis cell mode (EC-mode) in mixtures of H2O/H2, CO2/CO, H2O/H2O/CO2/CO at 750 °C, 800 °C and 850 °C. Although the SOCs are reversible, the polarisation characterisation shows that the kinetics for the reduction of H2O and CO2 is slower compared to oxidation of H2 and CO, and that oxidation/reduction in CO2/CO mixtures is slower than in H2O/H2 mixtures. The kinetic differences are partly related to the polarisation heating and the entropy change. Also the diffusion resistance is larger in EC-mode as compared to FC-mode and the low frequency concentration resistance (which is affected by diffusion), is asymmetric around the open circuit voltage (OCV), and is significantly higher in the EC-mode. Both the increased diffusion resistance and the asymmetric low frequency concentration resistance result in a decreased activity in the EC-mode. Changing the porosity of the support structure shows a significant change in both the diffusion resistance and low frequency concentration resistance when applying current, showing that diffusion limitations cannot be neglected for SOCs operated in the EC-mode. Also the Ni–YSZ TPB resistance is affected by changing the support porosity, indicating that kinetic investigations under current and even at OCV, and the chase for a general expression for “all” Ni–YSZ electrodes may be pointless. The diffusion limitations through the support and active electrode structure create an increased reducing atmosphere at the interface which may be related to the degradation of the cells.

Journal ArticleDOI
TL;DR: The A-site ordered layered double perovskite, PrBaMn2O(5+δ), was found to enhance electrocatalytic activity for CO2 reduction on the cathode side since it supports mixed valent transition metal cations such as Mn, which could provide high electrical conductivity and maintain a large oxygen vacancy content, contributing to fast oxygen ion diffusion.
Abstract: A-site ordered PrBaMn2O5+δ was investigated as a potential cathode for CO2 electrolysis using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte. The A-site ordered layered double perovskite, PrBaMn2O5+δ, was found to enhance electrocatalytic activity for CO2 reduction on the cathode side since it supports mixed valent transition metal cations such as Mn, which could provide high electrical conductivity and maintain a large oxygen vacancy content, contributing to fast oxygen ion diffusion. It was found that during the oxidation of the reduced PrBaMn2O5+δ (O5 phase) to PrBaMn2O6−δ (O6 phase), a reversible oxygen switchover in the lattice takes place. In addition, here the successful CO2 electrolysis was measured in LSGM electrolyte with this novel oxide electrode. It was found that this PrBaMn2O5+δ, layered perovskite cathode exhibits a performance with a current density of 0.85 A cm−2 at 1.5 V and 850 °C and the electrochemical properties were also evaluated by impedance spectroscopy.

Journal ArticleDOI
TL;DR: Under electrolyte-less conditions, the formation of >C2 products such as acetone and isopropanol is observed, but not in liquid-phase cell operations on the same electrodes, and the relative order of productivity in CO2 electrocatalytic reduction in the series of electrodes investigated is different between the two types of cells.
Abstract: The electrocatalytic reduction of CO2 is studied on a series of electrodes (based on Cu, Co, Fe and Pt metal nanoparticles deposited on carbon nanotubes or carbon black and then placed at the interface between a Nafion membrane and a gas-diffusion-layer electrode) on two types of cells: one operating in the presence of a liquid bulk electrolyte and the other in the absence of the electrolyte (electrolyte-less conditions). The results evidence how the latter conditions allow productivity of about one order of magnitude higher and how to change the type of products formed. Under electrolyte-less conditions, the formation of >C2 products such as acetone and isopropanol is observed, but not in liquid-phase cell operations on the same electrodes. The relative order of productivity in CO2 electrocatalytic reduction in the series of electrodes investigated is also different between the two types of cells. The implications of these results in terms of possible differences in the reaction mechanism are commented on, as well as in terms of the design of photoelectrocatalytic (PEC) solar cells.

Journal ArticleDOI
TL;DR: The presented approach does not rely on lithographic patterning and provides access to functional materials, which could have applications in subwavelength waveguiding, photovoltaics, and for large-area metamaterial fabrication.
Abstract: We demonstrate the large-scale organisation of anisotropic nanoparticles into linear assemblies displaying optical anisotropy on macroscopic areas. Monodisperse gold nanorods with a hydrophilic protein shell are arranged by dip-coating on wrinkled surfaces and subsequently transferred to indium tin oxide (ITO) substrates by capillary transfer printing. We elucidate how tuning the wrinkle amplitude enables us to precisely adjust the assembly morphology and fabricate single, double and triple nanorod lines. For the single lines, we quantify the order parameter of the assemblies as well as interparticle distances from scanning electron microscopy (SEM) images. We find an order parameter of 0.97 and a mean interparticle gap size of 7 nm. This combination of close to perfect uni-axial alignment and close-packing gives rise to pronounced macroscopic anisotropic optical properties due to strong plasmonic coupling. We characterise the optical response of the assemblies on ITO-coated glass via UV/vis/NIR spectroscopy and determine an optical order parameter of 0.91. The assemblies are thus plasmonic metamaterials, as their periodicity and building block sizes are well below the optical wavelength. The presented approach does not rely on lithographic patterning and provides access to functional materials, which could have applications in subwavelength waveguiding, photovoltaics, and for large-area metamaterial fabrication.

Journal ArticleDOI
TL;DR: Thermogravimetric investigations on the perovskite Ba (BSFZ) reveal striking observations that can be rationalized in terms of a defect chemical model and transport equations for materials with three mobile carriers, and implications for the search of cathode materials with mixed electronic and protonic conductivity for application on proton conducting oxide electrolytes are discussed.
Abstract: Thermogravimetric investigations on the perovskite Ba0.5Sr0.5Fe0.8Zn0.2O3−δ (BSFZ, with mixed hole, oxygen vacancy and proton conductivity) from water vapor can occur by acid–base reaction (hydration) or redox reaction (hydrogen uptake), depending on the oxygen partial pressure, i.e. on the material's defect concentrations. In parallel, the effective diffusion coefficient of the stoichiometry relaxation kinetics also changes. These striking observations can be rationalized in terms of a defect chemical model and transport equations for materials with three mobile carriers. Implications for the search of cathode materials with mixed electronic and protonic conductivity for application on proton conducting oxide electrolytes are discussed.

Journal ArticleDOI
TL;DR: In situ scanning vibrating electrode technique is used to determine current density distributions within the propagating corrosion features, and results are consistent with surface control of localised corrosion propagation in concentrated electrolyte, but ohmic control in dilute, lower conductivity NaCl solution.
Abstract: The early stages of localised corrosion affecting magnesium (Mg) surfaces when immersed in aqueous sodium chloride (NaCl) solutions involves the propagation of dark regions, within which both anodic metal dissolution and cathodic hydrogen evolution occur. For nominally “pure” Mg, these dark areas can either take the form of discs which expand radially with time, or filiform-like tracks which lengthen with time. For Mg surfaces which display disc-form corrosion features in concentrated NaCl electrolyte, a transition to filiform corrosion (FFC) is observed as the concentration is decreased, indicating ohmic constraints on radial propagation. A similar effect is observed when Mg specimens of different iron impurity are immersed in a fixed, high concentration NaCl solution, where disc-form corrosion is observed on samples having ≥280 ppm Fe, but FFC predominates at ≤80 ppm Fe. An in situ scanning vibrating electrode technique (SVET) is used to determine current density distributions within the propagating corrosion features. Cathodic current density values of between −100 and −150 A m−2 measured in central areas of disc-like features are sufficient to sustain the radial growth of a local anode at the perimeter of the discs. However, for high purity Mg specimens (≤80 ppm Fe), cathodic current densities of −10 A m−2 or less are measured over FFC affected regions, indicating that linear propagation arises when there is insufficient cathodic current produced on the corroded surface to sustain radial growth. The results are consistent with surface control of localised corrosion propagation in concentrated electrolyte, but ohmic control in dilute, lower conductivity NaCl solution.

Journal ArticleDOI
TL;DR: The results of the different measurements suggest that the stronger the solvent binds to the risperidone molecule in solution, the slower the nucleation becomes, and the difficulty of nucleation correlates reasonably to the DFT computations and the spectroscopic measurements.
Abstract: Over 2100 induction time experiments were carried out for the medium-sized, antipsychotic drug molecule, risperidone in seven different organic solvents. To reach the same induction time the required driving force increases in the order: cumene, toluene, acetone, ethyl acetate, methanol, propanol, and butanol, which reasonably well correlates to the interfacial energies as determined within classical nucleation theory. FTIR spectroscopy has been used to investigate any shifts in the spectra and to estimate the interaction of solute and solvent at the corresponding site. The solution condition has also been investigated by Density Functional Theory (DFT) calculations over (1 : 1) solvent-solute binding interactions at 8 different sites on the risperidone molecule. The DFT computational results agree with the spectroscopic data suggesting that these methods do capture the binding strength of solvent molecules to the risperidone molecule. The difficulty of nucleation correlates reasonably to the DFT computations and the spectroscopic measurements. The results of the different measurements suggest that the stronger the solvent binds to the risperidone molecule in solution, the slower the nucleation becomes.

Journal ArticleDOI
TL;DR: An optical method is presented that pins down the properties of the gap contents with high sensitivity, termed normalising plasmon resonance (NPR) spectroscopy, and uses this on a variety of ultrathin molecular spacers such as filled and empty cucurbiturils, and graphene.
Abstract: Plasmonic coupling of gold nanoparticles to a gold surface creates intense plasmonic hot spots with large electromagnetic field-enhancements within the cavity formed by the two metallic surfaces. The localised field in such structures is extremely sensitive to morphological fluctuations and subtle changes in the dielectric properties of the cavity contents. Here, we present an optical method that pins down the properties of the gap contents with high sensitivity, termed normalising plasmon resonance (NPR) spectroscopy. We use this on a variety of ultrathin molecular spacers such as filled and empty cucurbiturils, and graphene. Clear differences in the spectral positions and intensities of plasmonic modes observed in the scattering spectrum resolve thickness differences of 0.1 nm, and refractive index changes from molecular filling.