scispace - formally typeset
Search or ask a question

Showing papers in "Journal of General Virology in 2001"


Journal ArticleDOI
TL;DR: It is proposed that the FMDV 2A sequence, rather than representing a proteolytic element, modifies the activity of the ribosome to promote hydrolysis of the peptidyl(2A)-tRNA(Gly) ester linkage, thereby releasing the polypeptide from the translational complex, in a manner that allows the synthesis of a discrete downstream translation product to proceed.
Abstract: The 2A region of the aphthovirus foot-and-mouth disease virus (FMDV) polyprotein is only 18 aa long. A ‘primary’ intramolecular polyprotein processing event mediated by 2A occurs at its own C terminus. FMDV 2A activity was studied in artificial polyproteins in which sequences encoding reporter proteins flanked the 2A sequence such that a single, long, open reading frame was created. The self-processing properties of these artificial polyproteins were investigated and the co-translational ‘cleavage’ products quantified. The processing products from our artificial polyprotein systems showed a molar excess of ‘cleavage’ product N-terminal of 2A over the product C-terminal of 2A. A series of experiments was performed to characterize our in vitro translation systems. These experiments eliminated the translational or transcriptional properties of the in vitro systems as an explanation for this imbalance. In addition, the processing products derived from a control construct encoding the P1P2 region of the human rhinovirus polyprotein, known to be proteolytically processed, were quantified and found to be equimolar. Translation of a construct encoding green fluorescent protein (GFP), FMDV 2A and β-glucuronidase, also in a single open reading frame, in the presence of puromycin, showed this antibiotic to be preferentially incorporated into the [GFP2A] translation product. We conclude that the discrete translation products from our artificial polyproteins are not produced by proteolysis. We propose that the FMDV 2A sequence, rather than representing a proteolytic element, modifies the activity of the ribosome to promote hydrolysis of the peptidyl(2A)-tRNAGly ester linkage, thereby releasing the polypeptide from the translational complex, in a manner that allows the synthesis of a discrete downstream translation product to proceed. This process produces a ribosomal ‘skip’ from one codon to the next without the formation of a peptide bond.

764 citations


Journal ArticleDOI
TL;DR: Analysis of artificial reporter polyprotein systems comprising green fluorescent protein (GFP) linked via foot-and-mouth disease virus (FMDV) 2A to beta-glucuronidase (GUS) and naturally occurring '2A-like' sequences provide additional evidence that neither FMDV 2A nor '1A- like' sequences are autoproteolytic elements.
Abstract: The 2A/2B cleavage of aphtho- and cardiovirus 2A polyproteins is mediated by their 2A proteins ‘cleaving’ at their own C termini. We have analysed this activity using artificial reporter polyprotein systems comprising green fluorescent protein (GFP) linked via foot-and-mouth disease virus (FMDV) 2A to β-glucuronidase (GUS) – forming a single, long, open reading frame. Analysis of the distribution of radiolabel showed a high proportion of the in vitro translation products (∼90%) were in the form of the ‘cleavage’ products GUS and [GFP2A]. Alternative models have been proposed to account for the ‘cleavage’ activity: proteolysis by a host-cell proteinase, autoproteolysis or a translational effect. To investigate the mechanism of this cleavage event constructs encoding site-directed mutant and naturally occurring ‘2A-like’ sequences were used to program in vitro translation systems and the gel profiles analysed. Analysis of site-directed mutant 2A sequences showed that ‘cleavage’ occurred in constructs in which all the candidate nucleophilic residues were substituted – with the exception of aspartate-12. This residue is not, however, conserved amongst all functional ‘2A-like’ sequences. ‘2A-like’ sequences were identified within insect virus polyproteins, the NS34 protein of type C rotaviruses, repeated sequences in Trypanosoma spp. and a eubacterial α-glucosiduronasesequence(Thermatoga maritima aguA). All of the 2A-like sequences analysed were active (to various extents), other than the eubacterial α-glucosiduronase 2A-like sequence. This method of control of protein biogenesis may well not, therefore, be confined to members of the Picornaviridae. Taken together, these data provide additional evidence that neither FMDV 2A nor ‘2A-like’ sequences are autoproteolytic elements.

539 citations


Journal ArticleDOI
TL;DR: Two isolates of canine parvovirus (CPV) were obtained from dogs affected with severe haemorrhagic diarrhoea, and the failure of established typing methods to distinguish this antigenic variant was overcome by the development of an RFLP assay.
Abstract: Two isolates of canine parvovirus (CPV) were obtained from dogs affected with severe haemorrhagic diarrhoea. Type 2b antigenic specificity was predicted by both antigenic analysis with monoclonal antibodies and PCR characterization with type-specific primers. Nevertheless, sequence analysis of the capsid protein-encoding gene revealed two amino acid changes. One of the changes affected position 426 (Asp to Glu), in a major antigenic site of the viral capsid, determining the replacement of a residue unique to CPV type 2b. The failure of established typing methods to distinguish this antigenic variant was overcome by the development of an RFLP assay.

485 citations


Journal ArticleDOI
TL;DR: Analysis of naturally infected cassava plants showed various assortments of DNA-A and DNA-B of the Ugandan viruses, suggesting the occurrence of natural inter- and intraspecies pseudorecombinations and a pattern of cassava mosaic disease (CMD) more complex than previously reported.
Abstract: The molecular variability of cassava geminiviruses occurring in Uganda was investigated in this study. Infected cassava plants and whiteflies were collected from cassava plantings in different geographical areas of the country and PCR was used for molecular characterization of the viruses. Two complete sequences of DNA-A and -B from African cassava mosaic virus (ACMV), two DNA-A sequences from East African cassava mosaic virus (EACMV), two DNA-B sequences of EACMV and the partial DNA-A nucleotide sequence of a new virus strain isolated in Uganda, EACMV-UG3, are reported here. Analysis of naturally infected cassava plants showed various assortments of DNA-A and DNA-B of the Ugandan viruses, suggesting the occurrence of natural inter- and intraspecies pseudorecombinations and a pattern of cassava mosaic disease (CMD) more complex than previously reported. EACMV-UG2 DNA-A, which contains a recombinant fragment between ACMV and EACMV-UG1 in the coat protein gene that resembles virus from Tanzania, was widespread in the country and always associated with EACMV-UG3 DNA-B, which probably resulted from another natural recombination event. Mixed infections of ACMV-UG and EACMV-UG in cassava and whiteflies were detected in most of the regions where both viruses occurred. These mixed-infected samples always showed extremely severe CMD symptoms, suggesting a synergistic interaction between ACMV-UG and EACMV-UG2. The first demonstration is provided of infectivity of EACMV clones to cassava, proving conclusively that the pseudorecombinant EACMV-UG2 DNA-A+EACMV-UG3 DNA-B is a causal agent of CMD in Uganda.

369 citations


Journal ArticleDOI
TL;DR: Phylogenetic analysis indicates that avian HEV is genetically related to, but distinct from, other known HEV strains.
Abstract: Hepatitis–splenomegaly (HS) syndrome is an emerging disease in chickens in North America; the cause of this disease is unknown. In this study, the genetic identification and characterization of a novel virus related to human hepatitis E virus (HEV) isolated from bile samples of chickens with HS syndrome is reported. Based upon the similar genomic organization and significant sequence identity of this virus with HEV, the virus has been tentatively named avian HEV in order to distinguish it from human and swine HEV. Electron microscopy revealed that avian HEV is a non-enveloped virus particle of 30–35 nm in diameter. The sequence of the 3′ half of the viral genome (∼4 kb) was determined. Sequence analyses revealed that this genomic region contains the complete 3′ non-coding region, the complete genes from open reading frames (ORFs) 2 and 3, the complete RNA-dependent RNA polymerase (RdRp) gene and a partial helicase gene from ORF 1. The helicase gene is the most conserved gene between avian HEV and other HEV strains, displaying 58–61% aa and 57–60% nt sequence identities. The RdRp gene of avian HEV shares 47–50% aa and 52–53% nt sequence identities and the putative capsid gene (ORF 2) of avian HEV shares 48–49% aa and 48–51% nt sequence identities with the corresponding regions of other known HEV strains. Phylogenetic analysis indicates that avian HEV is genetically related to, but distinct from, other known HEV strains. This discovery has important implications for HEV animal models, nomenclature and natural history.

329 citations


Journal ArticleDOI
TL;DR: Phylogenetic analysis of the Flavivirus genus revealed an extensive series of clades defined by their epidemiology and disease associations, which revealed distinct geographical clusters in either the Old World or the New World, which for mosquito-borne viruses may reflect an Old World origin.
Abstract: Phylogenetic analysis of the Flavivirus genus, using either partial sequences of the non-structural 5 gene or the structural envelope gene, revealed an extensive series of clades defined by their epidemiology and disease associations. These phylogenies identified mosquito-borne, tick-borne and no-known-vector (NKV) virus clades, which could be further subdivided into clades defined by their principal vertebrate host. The mosquito-borne flaviviruses revealed two distinct epidemiological groups: (i) the neurotropic viruses, often associated with encephalitic disease in humans or livestock, correlated with the Culex species vector and bird reservoirs and (ii) the non-neurotropic viruses, associated with haemorrhagic disease in humans, correlated with the Aedes species vector and primate hosts. Thus, the tree topology describing the virus–host association may reflect differences in the feeding behaviour between Aedes and Culex mosquitoes. The tick-borne viruses also formed two distinct groups: one group associated with seabirds and the other, the tick-borne encephalitis complex viruses, associated primarily with rodents. The NKV flaviviruses formed three distinct groups: one group, which was closely related to the mosquito-borne viruses, associated with bats; a second group, which was more genetically distant, also associated with bats; and a third group associated with rodents. Each epidemiological group within the phylogenies revealed distinct geographical clusters in either the Old World or the New World, which for mosquito-borne viruses may reflect an Old World origin. The correlation between epidemiology, disease correlation and biogeography begins to define the complex evolutionary relationships between the virus, vector, vertebrate host and ecological niche.

314 citations


Journal ArticleDOI
TL;DR: A reverse-genetic system is described for the generation of recombinant coronaviruses based upon the in vitro transcription of infectious RNA from a cDNA copy of the human coronavirus 229E genome that has been cloned and propagated in vaccinia virus.
Abstract: The coronavirus genome is a positive-strand RNA of extraordinary size and complexity. It is composed of approximately 30000 nucleotides and it is the largest known autonomously replicating RNA. It is also remarkable in that more than two-thirds of the genome is devoted to encoding proteins involved in the replication and transcription of viral RNA. Here, a reverse-genetic system is described for the generation of recombinant coronaviruses. This system is based upon the in vitro transcription of infectious RNA from a cDNA copy of the human coronavirus 229E genome that has been cloned and propagated in vaccinia virus. This system is expected to provide new insights into the molecular biology and pathogenesis of coronaviruses and to serve as a paradigm for the genetic analysis of large RNA virus genomes. It also provides a starting point for the development of a new class of eukaryotic, multi-gene RNA vectors that are able to express several proteins simultaneously.

314 citations


Journal ArticleDOI
TL;DR: Using a large sequence database, the distribution of viruses belonging to each of the eight topotypes has been determined and the topotypes appear to represent evolutionary cul-de-sacs.
Abstract: Serotype O is the most prevalent of the seven serotypes of foot-and-mouth disease (FMD) virus and occurs in many parts of the world. The UPGMA method was used to construct a phylogenetic tree based on nucleotide sequences at the 3′ end of the VP1 gene from 105 FMD type O viruses obtained from samples submitted to the OIE/FAO World Reference Laboratory for FMD. This analysis identified eight major genotypes when a value of 15% nucleotide difference was used as a cut-off. The validity of these groupings was tested on the complete VP1 gene sequences of 23 of these viruses by bootstrap resampling and construction of a neighbour-joining tree. These eight genetic lineages fell within geographical boundaries and we have used the term topotype to describe them. Using a large sequence database, the distribution of viruses belonging to each of the eight topotypes has been determined. These phylogenetically based epidemiological studies have also been used to identify viruses that have transgressed their normal ecological niches. Despite the high rate of mutation during replication of the FMD virus genome, the topotypes appear to represent evolutionary cul-de-sacs.

300 citations


Journal ArticleDOI
TL;DR: The spread and origins of hepatitis C virus (HCV) in human populations have been the subject of extensive investigations, but the relatively recent times predicted for the origin of these viruses fit poorly with their epidemiological distributions and the recent evidence for species-associated variants of HBV and HGV/GBV-C in a wide range of non-human primates.
Abstract: The spread and origins of hepatitis C virus (HCV) in human populations have been the subject of extensive investigations, not least because of the importance this information would provide in predicting clinical outcomes and controlling spread of HCV in the future. However, in the absence of historical and archaeological records of infection, the evolution of HCV and other human hepatitis viruses can only be inferred indirectly from their epidemiology and by genetic analysis of contemporary virus populations. Some information on the history of the latter may be obtained by dating the time of divergence of various genotypes of HCV, hepatitis B virus (HBV) and the non-pathogenic hepatitis G virus (HGV)/GB virus-C (GBV-C). However, the relatively recent times predicted for the origin of these viruses fit poorly with their epidemiological distributions and the recent evidence for species-associated variants of HBV and HGV/GBV-C in a wide range of non-human primates. The apparent conservatism of viruses over long periods implied by these latter observations may be the result of constraints on sequence change peculiar to viruses with single-stranded genomes, or with overlapping reading frames. Large population sizes and intense selection pressures that optimize fitness may be the factors that set virus evolution apart from that of their hosts.

237 citations


Journal ArticleDOI
TL;DR: GeneParityPlot analysis suggests that HaSNPV, SeM NPV and LdMNPV (group II) have structural genomic features in common and are distinct from the group I NPVs and from the granuloviruses.
Abstract: The nucleotide sequence of the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV) DNA genome was determined and analysed. The circular genome encompasses 131,403 bp, has a G+C content of 39.1 mol% and contains five homologous regions with a unique pattern of repeats. Computer-assisted analysis revealed 135 putative ORFs of 150 nt or larger; 100 ORFs have homologues in Autographa californica multicapsid NPV (AcMNPV) and a further 15 ORFs have homologues in other baculoviruses such as Lymantria dispar MNPV (LdMNPV), Spodoptera exigua MNPV (SeMNPV) and Xestia c-nigrum granulovirus (XcGV). Twenty ORFs are unique to HaSNPV without homologues in GenBank. Among the six previously sequenced baculoviruses, AcMNPV, Bombyx mori NPV (BmNPV), Orgyia pseudotsugata MNPV (OpMNPV), SeMNPV, LdMNPV and XcGV, 65 ORFs are conserved and hence are considered as core baculovirus genes. The mean overall amino acid identity of HaSNPV ORFs was the highest with SeMNPV and LdMNPV homologues. Other than three 'baculovirus repeat ORFs' (bro) and two 'inhibitor of apoptosis' (iap) genes, no duplicated ORFs were found. A putative ORF showing similarity to poly(ADP-ribose) glycohydrolases (parg) was newly identified. The HaSNPV genome lacks a homologue of the major budded virus (BV) glycoprotein gene, gp64, of AcMNPV, BmNPV and OpMNPV. Instead, a homologue of SeMNPV ORF8, encoding the major BV envelope protein, has been identified. GeneParityPlot analysis suggests that HaSNPV, SeMNPV and LdMNPV (group II) have structural genomic features in common and are distinct from the group I NPVs and from the granuloviruses. Cluster alignment between group I and group II baculoviruses suggests that they have a common ancestor.

231 citations


Journal ArticleDOI
TL;DR: The molecular epidemiology of respiratory syncytial virus was studied over four consecutive seasons (1997-2000) in a single tertiary hospital in South Africa: 225 isolates were subgrouped by RT-PCR and the resulting products sequenced.
Abstract: The molecular epidemiology of respiratory syncytial virus (RSV) was studied over four consecutive seasons (1997–2000) in a single tertiary hospital in South Africa: 225 isolates were subgrouped by RT–PCR and the resulting products sequenced. Subgroup A predominated in two seasons, while A and B co-circulated approximately equally in the other seasons. The nucleotide sequences of the C-terminal of the G-protein were compared to sequences representative of previously defined RSV genotypes. South African subgroup A and subgroup B isolates clustered into four and five genotypes respectively. One new subgroup A and three new subgroup B genotypes were identified. Different genotypes co-circulated in every season. Different circulation patterns were identified for group A and B isolates. Subgroup A revealed more variability and displacement of genotypes while subgroup B remained more consistent.

Journal ArticleDOI
TL;DR: Analysis of the results confirmed that the 3' third of the VP1-coding sequence contains serotype-specific information and can be used as the basis of an effective and rapid molecular typing method.
Abstract: To explore further the phylogenetic relationships between human enteroviruses and to develop new diagnostic approaches, we designed a pair of generic primers in order to study a 1452 bp genomic fragment (relative to the poliovirus Mahoney genome), including the 3′ end of the VP1-coding region, the 2A- and 2B-coding regions, and the 5′ moiety of the 2C-coding region. Fifty-nine of the 64 prototype strains and 45 field isolates of various origins, involving 21 serotypes and 6 strains untypeable by standard immunological techniques, were successfully amplified with these primers. By determining the nucleotide sequence of the genomic fragment encoding the C-terminal third of the VP1 capsid protein we developed a molecular typing method based on RT–PCR and sequencing. If field isolate sequences were compared to human enterovirus VP1 sequences available in databases, nucleotide identity score was, in each case, highest with the homotypic prototype (74.8 to 89.4%). Phylogenetic trees were generated from alignments of partial VP1 sequences with several phylogeny algorithms. In all cases, the new classification of enteroviruses into five identified species was confirmed and strains of the same serotype were always monophyletic. Analysis of the results confirmed that the 3′ third of the VP1-coding sequence contains serotype-specific information and can be used as the basis of an effective and rapid molecular typing method. Furthermore, the amplification of such a long genomic fragment, including non-structural regions, is straightforward and could be used to investigate genome variability and to identify recombination breakpoints or specific attributes of pathogenicity.

Journal ArticleDOI
TL;DR: The newly prepared vaccine appears suitable as a reference standard for studying the mechanism of vaccine-enhanced disease caused by this virus, and the lesions in the lungs of the two humans who died with the vaccines found that they were similar to, but more severe than those seen in the cotton rats.
Abstract: A formalin-inactivated respiratory syncytial virus vaccine was used to immunize infants in the mid-1960s; when these children later were naturally infected by the virus they developed markedly accentuated disease, and two died. For the present work, a new batch of vaccine was prepared using the original formula. Administration of either the old or new vaccines resulted in enhanced lesions in immunized cotton rats subsequently challenged with live virus, although administration of the vaccine reduced virus replication by 90%. Animals primed with formalin-inactivated virus and challenged developed markedly accentuated lesions of the same type as in animals undergoing primary or secondary infection. In addition, the animals with the vaccine-enhanced disease developed alveolitis and interstitial pneumonitis, which appear to be specific markers for the vaccine enhancement. The newly prepared vaccine appears suitable as a reference standard for studying the mechanism of vaccine-enhanced disease caused by this virus. Additionally, we reviewed the lesions in the lungs of the two humans who died with the vaccine-enhanced disease in 1967, and found that they were similar to, but more severe than those seen in the cotton rats.

Journal ArticleDOI
TL;DR: It is shown here that IFN-α inhibits subgenomic HCV RNA replication in HuH-7 human hepatoma cells in a dose-dependent manner and whether MxA plays a role in the inhibition of HCV is investigated.
Abstract: Hepatitis C virus (HCV) persists in the majority of infected individuals and is a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Chronic hepatitis C is currently treated with interferon (IFN)-α or with a combination of IFN-α and ribavirin. The availability of an HCV replicon system (Lohmann et al., Science 285, 110–113, 1999) allowed the investigation of the effects of IFN on genuine HCV replication in cultured cells. It is shown here that IFN-α inhibits subgenomic HCV RNA replication in HuH-7 human hepatoma cells. Immunofluorescence, Western blot and Northern blot analysis revealed that levels of both HCV protein and replicon RNA were reduced after treatment with IFN-α in a dose-dependent manner. In further experiments, it was investigated whether MxA plays a role in the inhibition of HCV. The human MxA protein is an IFN-induced GTPase that has antiviral activity against various RNA viruses. However, HCV RNA replication was not affected in transfected HuH-7 cells that transiently overexpressed MxA. Moreover, a dominant-negative mutant of MxA did not interfere with the antiviral activity of IFN-α against HCV RNA replication. Taken together, these results demonstrate that IFN-α inhibits HCV replicons via an MxA-independent pathway.

Journal ArticleDOI
TL;DR: Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production, and it was found that the selective pressure did not change during the time period studied.
Abstract: A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was sequenced and compared with the parental strain of the vaccine virus (VR2332). This revealed five mutations that had occurred independently in all three vaccine-derived field isolates, indicating strong parallel selective pressure on these positions in the vaccine virus when used in swine herds. Two of these parallel mutations were direct reversions to the parental VR2332 sequence and were situated in a papain-like cysteine protease domain and in the helicase domain. The remaining parallel mutations might be seen as second-site compensatory mutations for one or more of the mutations that accumulated in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not change during the time period studied. The implications of these findings for PRRS vaccine attenuation and reversion are discussed.

Journal ArticleDOI
TL;DR: Several genes reported to have major roles in baculovirus biology were not found in the CpGV genome, such as gp64, the major budded virus glycoprotein gene in some nucleopolyhedroviruses, and lef-7, involved in DNA replication.
Abstract: The nucleotide sequence of the DNA genome of Cydia pomonella granulovirus (CpGV) was determined and analysed. The genome is composed of 123500 bp and has a G+C content of 45·2%. It contains 143 ORFs of 150 nucleotides or more that show minimal overlap. One-hundred-and-eighteen (82·5%) of these putative genes are homologous to genes previously identified in other baculoviruses. Among them, 73 are homologous to genes of Autographa californica nucleopolyhedrovirus (AcMNPV), whereas 108 and 98 are homologous to genes of Xestia c-nigrum GV (XcGV) and Plutella xylostella GV (PxGV), respectively. These homologues show on average 37·4% overall amino acid sequence identity to those from AcMNPV and 45% to those from XcGV and PxGV. The CpGV gene content was compared to that of other baculoviruses. Several genes reported to have major roles in baculovirus biology were not found in the CpGV genome, such as gp64, the major budded virus glycoprotein gene in some nucleopolyhedroviruses, and lef-7, involved in DNA replication. However, the CpGV genome encodes the large and small subunits of ribonucleotide reductase, three inhibitor of apoptosis (iap) homologues and two protein tyrosine phosphatases. The CpGV, PxGV and XcGV genomes present a noticeably high level of conservation of gene order and orientation. A striking feature of the CpGV genome is the absence of typical homologous repeat sequences. However, it contains one major repeat region and 13 copies of a single 73–77 bp imperfect palindrome.

Journal ArticleDOI
TL;DR: This is the first report of the characteristics of complete nucleotide sequences of HBV from Australian Aborigines, which contribute to the investigation of the worldwide spread ofHBV, the relationship between serotype and genotype and the ancient common origin of AustralianAborigines.
Abstract: There have been no reports of DNA sequences of hepatitis B virus (HBV) strains from Australian Aborigines, although the hepatitis B surface antigen (HBsAg) was discovered among them. To investigate the characteristics of DNA sequences of HBV strains from Australian Aborigines, the complete nucleotide sequences of HBV strains were determined and subjected to molecular evolutionary analysis. Serum samples positive for HBsAg were collected from five Australian Aborigines. Phylogenetic analysis of the five complete nucleotide sequences compared with DNA sequences of 54 global HBV isolates from international databases revealed that three of the five were classified into genotype D and were most closely related in terms of evolutionary distance to a strain isolated from a healthy blood donor in Papua New Guinea. Two of the five were classified into a novel variant genotype C, which has not been reported previously, and were closely related to a strain isolated from Polynesians, particularly in the X and Core genes. These two strains of variant genotype C differed from known genotype C strains by 5.9-7.4% over the complete nucleotide sequence and 4.0-5.6 % in the small-S gene, and had residues Arg(122), Thr(127) and Lys(160) characteristic of serotype ayw3, which have not been reported previously in genotype C. In conclusion, this is the first report of the characteristics of complete nucleotide sequences of HBV from Australian Aborigines. These results contribute to the investigation of the worldwide spread of HBV, the relationship between serotype and genotype and the ancient common origin of Australian Aborigines.

Journal ArticleDOI
TL;DR: The nsp2 and nsp3 cleavage products play a crucial role in two processes that are common to positive-strand RNA viruses that replicate in mammalian cells: controlled proteolysis of replicase precursors and membrane association of the virus replication complex.
Abstract: The replicase polyproteins of equine arteritis virus (EAV; family Arteriviridae, order Nidovirales) are processed by three viral proteases to yield 12 non-structural proteins (nsps). The nsp2 and nsp3 cleavage products have previously been found to interact, a property that allows nsp2 to act as a co-factor in the processing of the downstream part of the polyprotein by the nsp4 protease. Remarkably, upon infection of Vero cells, but not of BHK-21 or RK-13 cells, EAV nsp2 is now shown to be subject to an additional, internal, cleavage. In Vero cells, approximately 50% of nsp2 (61 kDa) was cleaved into an 18 kDa N-terminal part and a 44 kDa C-terminal part, most likely by a host cell protease that is absent in BHK-21 and RK-13 cells. Although the functional consequences of this additional processing step are unknown, the experiments in Vero cells revealed that the C-terminal part of nsp2 interacts with nsp3. Most EAV nsps localize to virus-induced double-membrane structures in the perinuclear region of the infected cell, where virus RNA synthesis takes place. It is now shown that, in an expression system, the co-expression of nsp2 and nsp3 is both necessary and sufficient to induce the formation of double-membrane structures that strikingly resemble those found in infected cells. Thus, the nsp2 and nsp3 cleavage products play a crucial role in two processes that are common to positive-strand RNA viruses that replicate in mammalian cells: controlled proteolysis of replicase precursors and membrane association of the virus replication complex.

Journal ArticleDOI
TL;DR: Antibody treatment blocked the effect of a potent antiviral drug, 3-deazaneplanocin A, indicating that successful filovirus therapy may require the active participation of the Type I IFN response.
Abstract: Adult immunocompetent mice inoculated with Ebola (EBO) or Marburg (MBG) virus do not become ill. A suckling-mouse-passaged variant of EBO Zaire ’76 (‘mouse-adapted EBO-Z’) causes rapidly lethal infection in adult mice after intraperitoneal (i.p.) inoculation, but does not cause apparent disease when inoculated subcutaneously (s.c.). A series of experiments showed that both forms of resistance to infection are mediated by the Type I interferon response. Mice lacking the cell-surface IFN-α/β receptor died within a week after inoculation of EBO-Z ’76, EBO Sudan, MBG Musoke or MBG Ravn, or after s.c. challenge with mouse-adapted EBO-Z. EBO Reston and EBO Ivory Coast did not cause illness, but immunized the mice against subsequent challenge with mouse-adapted EBO-Z. Normal adult mice treated with antibodies against murine IFN-α/β could also be lethally infected with i.p.-inoculated EBO-Z ’76 or EBO Sudan and with s.c.-inoculated mouse-adapted EBO-Z. Severe combined immunodeficient (SCID) mice became ill 3–4 weeks after inoculation with EBO-Z ’76, EBO Sudan or MBG Ravn, but not the other viruses. Treatment with anti-IFN-α/β antibodies markedly accelerated the course of EBO-Z ’76 infection. Antibody treatment blocked the effect of a potent antiviral drug, 3-deazaneplanocin A, indicating that successful filovirus therapy may require the active participation of the Type I IFN response. Mice lacking an IFN-α/β response resemble primates in their susceptibility to rapidly progressive, overwhelming filovirus infection. The outcome of filovirus transfer between animal species appears to be determined by interactions between the virus and the innate immune response.

Journal ArticleDOI
TL;DR: This infection model may provide new insights on mechanisms of protective immunity to ASFV and lymphoproliferative responses to the mitogens concanavalin A, phytohaemagglutinin and pokeweed mitogen were not depressed in either of the two clinically defined groups of pigs.
Abstract: African swine fever virus ASFV/NH/P68 is a naturally occurring, non-haemadsorbing and non-fatal isolate. Longitudinal clinical and immunological studies on 31 pigs inoculated oronasally or intramuscularly with this isolate defined two discrete groups of animals: those developing ASF chronic type lesions and those remaining asymptomatic. Animals developing lesions had viraemia and fever late after infection, NK activity levels close to that of control animals and high levels of anti-ASFV specific antibodies together with a marked hypergammaglobulinaemia involving IgG1, IgG2, IgM and IgA immunoglobulin isotypes. Pigs remaining asymptomatic after infection, on the other hand, did not have viraemia or fever after day 14 post-infection and had elevated NK cell activity, but normal plasma Ig concentrations and relatively low specific anti-virus antibody concentrations throughout the duration of the experiments. Importantly, the latter group of pigs virus were resistant to subsequent challenge with the highly virulent ASFV/L60 isolate and survived with no major changes in any of the parameters examined and referred to above. Finally, lymphoproliferative responses to the mitogens concanavalin A, phytohaemagglutinin and pokeweed mitogen were not depressed in either of the two clinically defined groups of pigs. Thus further studies with this infection model may provide new insights on mechanisms of protective immunity to ASFV.

Journal ArticleDOI
TL;DR: Findings underscore the need to carefully select an appropriate ligand for structure-function analysis of the hepatitis C virus envelope glycoproteins, E1 and E2, and indicate the existence of structural differences amongst the E2 forms.
Abstract: Structure–function analysis of the hepatitis C virus (HCV) envelope glycoproteins, E1 and E2, has been difficult due to the unavailability of HCV virions. Truncated soluble forms of E2 have been used as models to study virus interaction with the putative HCV receptor CD81, but they may not fully mimic E2 structures on the virion. Here, we compared the CD81-binding characteristics of truncated E2 (E2660) and full-length (FL) E1E2 complex expressed in mammalian cells, and of HCV virus-like particles (VLPs) generated in insect cells. All three glycoprotein forms interacted with human CD81 in an in vitro binding assay, allowing us to test a panel of well-characterized anti-E2 monoclonal antibodies (MAbs) for their ability to inhibit the glycoprotein–CD81 interaction. MAbs specific for E2 amino acid (aa) regions 396–407, 412–423 and 528–535 blocked binding to CD81 of all antigens tested. However, MAbs specific for regions 432–443, 436–443 and 436–447 inhibited the interaction of VLPs, but not of E2660 or the FL E1E2 complex with CD81, indicating the existence of structural differences amongst the E2 forms. These findings underscore the need to carefully select an appropriate ligand for structure–function analysis.

Journal ArticleDOI
TL;DR: The paper was originally published in the Journal of General Virology (2001), 82, 2589–2595 and has been republished here with edits.
Abstract: IP: 54.191.40.80 On: Sat, 09 Sep 2017 23:23:00 Journal of General Virology (2001), 82, 2589–2595. Printed in Great Britain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Journal ArticleDOI
TL;DR: The direct interaction of importin-beta with NS5 has implications for the mechanism by which this normally cytoplasmic protein may be targetted to the nucleus.
Abstract: The dengue virus RNA-dependent RNA polymerase, NS5, and the protease/helicase, NS3, are multidomain proteins that have been shown to interact both in vivo and in vitro. A hyperphosphorylated form of NS5 that does not interact with NS3 has been detected in the nuclei of virus-infected cells, presumably as the result of the action of a functional nuclear localization sequence within the interdomain region of NS5 (residues 369–405). In this study, it is shown by using the yeast two-hybrid system that the C-terminal region of NS3 (residues 303–618) interacts with the N-terminal region of NS5 (residues 320–368). Further, it is shown that this same region of NS5 is also recognized by the cellular nuclear import receptor importin-β. The interaction between NS5 and importin-β and competition by NS3 with the latter for the same binding site on NS5 were confirmed by pull-down assays. The direct interaction of importin-β with NS5 has implications for the mechanism by which this normally cytoplasmic protein may be targetted to the nucleus.

Journal ArticleDOI
TL;DR: This research presents a meta-analyses of the immune system’s response to the presence of EMTs and its role in the development of central nervous system disease.
Abstract: IP: 54.70.40.11 On: Thu, 25 Oct 2018 04:50:09 Journal of General Virology (2001), 82, 973–984. Printed in Great Britain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Journal ArticleDOI
TL;DR: Novel insights are provided into the compartmentalization of HBx and may prove important for future evaluations of its functions, both in the viral life-cycle and in the pathology of HBV-related liver disease.
Abstract: The hepatitis B virus (HBV) X protein (HBx) was originally suggested to be a viral transcriptional activator, but its functional mechanisms are still unclear. In this study we have analysed the intracellular localization of HBx in transfected cells and demonstrate that its compartmentalization is dependent on overall expression levels. HBx was exclusively or predominantly localized in the nuclei in weakly expressing cells. However, elevated cellular levels correlated with its accumulation in the cytoplasm, suggesting that the capacity of HBx for nuclear compartmentalization might be limited. Cytoplasmic HBx was detected either as punctate granular staining or in dispersed, finely granular patterns. We have further analysed the detailed cytoplasmic compartmentalization, using confocal microscopy, and show no association with the endoplasmic reticulum, plasma membrane or lysosomes, but a substantial association of HBx with mitochondria. However, a major fraction of cytoplasmic HBx did not localize in mitochondria, indicating the presence of two distinctly compartmentalized cytoplasmic populations. Furthermore, high levels of HBx expression led to an abnormal mitochondrial distribution, involving clumping and organelle aggregation, which was not observed at lower expression levels. The data presented here provide novel insights into the compartmentalization of HBx and may prove important for future evaluations of its functions, both in the viral life-cycle and in the pathology of HBV-related liver disease.

Journal ArticleDOI
TL;DR: The PrV US3 protein appears to be involved in the de-envelopment of perinuclear virions by fusion with the outer leaflet of the nuclear membrane, and no difference in the phosphorylation of the PrV UL34 protein was observed in the presence or absence of the US3 kinase.
Abstract: The alphaherpesvirus UL34 protein is necessary for the primary envelopment of intranuclear capsids at the inner leaflet of the nuclear membrane. In herpes simplex virus type 1, the UL34 protein is exclusively phosphorylated by the protein kinase encoded by the non-essential US3 gene. To investigate the effect of the pseudorabies virus (PrV) US3 product on the intracellular localization of the UL34 protein and on virus morphogenesis, PrV US3 deletion mutants were isolated and characterized. Immunofluorescence analyses demonstrated that in the absence of the US3 protein, the localization of the UL34 polypeptide to the nuclear membrane was not as pronounced as that seen with US3, although immunoelectron microscopy indicated the presence of the UL34 protein in both leaflets of the nuclear membrane. Ultrastructurally, an accumulation of enveloped virions in the perinuclear space in large invaginations of the inner nuclear membrane was observed, which were shown by immunoelectron microscopy to contain the UL34 protein, but not glycoproteins gB or gC. Thus, the US3 protein appears to be involved in the de-envelopment of perinuclear virions by fusion with the outer leaflet of the nuclear membrane. Surprisingly, no difference in the phosphorylation of the PrV UL34 protein was observed in the presence or absence of the US3 kinase. Therefore, the observed effects of the PrV US3 protein on the intracellular localization of the UL34 protein and on virus morphogenesis are probably not due to the phosphorylation of the UL34 protein by the US3 kinase.

Journal ArticleDOI
Bryan Charleston1, M. D. Fray1, Susan J. Baigent1, B. V. Carr1, W. I. Morrison1 
TL;DR: The ability of ncpBVDV to inhibit the induction of type I IFN has evolved to enable the virus to establish persistent infection in the early foetus, suggesting the establishment of persistent infections with non-cytopathic bovine virus diarrhoea virus in cattle populations.
Abstract: The establishment of persistent infections with non-cytopathic bovine virus diarrhoea virus (ncpBVDV) is crucial for the maintenance of BVDV in cattle populations. Also, super-infection of persistently infected individuals with antigenically homologous cytopathic BVDV (cpBVDV) results in fatal mucosal disease. Persistent infection with ncpBVDV is established by infection of the foetus during the first trimester of pregnancy. It has been shown previously that foetal infection with cpBVDV does not result in persistent infection. Infection of cells in vitro has demonstrated that cpBVDV induces type I interferon (IFN), whereas ncpBVDV fails to induce IFN. In this study we demonstrate that foetal challenge with cpBVDV results in IFN production, whereas ncpBVDV does not. These findings strongly suggest that the ability of ncpBVDV to inhibit the induction of type I IFN has evolved to enable the virus to establish persistent infection in the early foetus.

Journal ArticleDOI
TL;DR: The results emphasize the close relationship between endogenous and infectious retroviruses and might be important in relation to the process of tumour progression in humans.
Abstract: We have demonstrated previously that the envelope proteins of a murine retrovirus (Moloney murine leukaemia virus) and a simian retrovirus (Mason–Pfizer monkey virus) have immunosuppressive properties in vivo. This property was manifested by the ability of the proteins, when expressed by tumour cells normally rejected by engrafted mice, to allow the envelope-expressing cells to escape immune rejection and to proliferate. Here, it is shown that this property is not restricted to the envelope of infectious retroviruses, but is also shared by the envelope protein encoded by an endogenous retrovirus of humans belonging to the HERV-H family. These results emphasize the close relationship between endogenous and infectious retroviruses and might be important in relation to the process of tumour progression in humans.

Journal ArticleDOI
TL;DR: The Singapore S275/90 strain appears to be the evolutionary product of a recombination event between viruses belonging to two distinct lineages: one lineage includes an African strain isolated in Abidjan (Ivory Coast) and the other includes isolates from Djibouti and Cambodia.
Abstract: Recombination events are known to occur in non-segmented RNA viruses like polioviruses or alphaviruses. Analysis of the subgenomic sequences of dengue virus type 1 (DENV-1) structural genes has recently allowed the identification of possible recombination breakpoints. Because DENV is a major human pathogen, this discovery might have important implications for virus pathogenicity, vaccine safety and efficiency, or diagnosis and, therefore, requires clear confirmation. We report the complete sequence determination of one Asian and two African strains of DENV-1 isolated from human patients. Rigorous sequence analysis provided strong evidence for the occurrence of intragenomic recombination events between DENV-1 strains belonging to different lineages. Singapore S275/90 strain appears to be the evolutionary product of a recombination event between viruses belonging to two distinct lineages: one lineage includes an African strain isolated in Abidjan (Ivory Coast) and the other includes isolates from Djibouti and Cambodia. The ‘Recombination Detection Program’, bootscanning and analysis of diversity plots provided congruent results concerning the existence of a two-switch recombination event and the localization of recombination breakpoints. Thus, the 5′ and 3′ genomic ends of the Singapore S275/90 strain were inherited from a Djibouti/Cambodia lineage ancestor and an internal fragment located in the envelope/NS1 region originated from an Abidjan lineage ancestor.

Journal ArticleDOI
TL;DR: An association between the provirus load and the outcome of Fe LV infection was found and quantification of provirus loads will lead to a better understanding of FeLV pathogenesis and anti-retrovirus protective mechanisms.
Abstract: Feline leukaemia virus (FeLV) infection in domestic cats can vary in its outcome (persistent, transient, no infection) for reasons that are not entirely known. It was hypothesized that the initial virus and provirus load could significantly influence the course of retrovirus infection. To determine the role of provirus loads, two methods of PCR, a nested PCR and a fluorogenic probe-based (TaqMan) real-time quantitative PCR, which were specific to the U3 region of FeLV-A were established. FeLV provirus in naturally and experimentally infected cats was then measured. Only 3 weeks after experimental FeLV-A infection, persistently infected cats demonstrated higher provirus loads and lower humoral immune responses than cats that had overcome antigenaemia. Lower initial provirus loads were associated with successful humoral immune responses. Unexpectedly, provirus in the buffy-coat cells of two cats that tested negative for the p27 antigen (a marker for viraemia) was also detected. In 597 Swiss cats, comparison of p27 antigen levels with PCR results revealed broad agreement. However, similar to the experimental situation, a significant number of animals (10%) was negative for the p27 antigen and FeLV-positive by PCR. These cats had a mean provirus load 300-fold lower than that of animals testing positive for the p27 antigen. In conclusion, an association between the provirus load and the outcome of FeLV infection was found. Detection of provirus carriers should contribute to further the control of FeLV. In addition, quantification of provirus loads will lead to a better understanding of FeLV pathogenesis and anti-retrovirus protective mechanisms.