scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Nutritional Biochemistry in 2021"


Journal ArticleDOI
TL;DR: In this paper, the role of cytokines in the induction of cancer stem-like cells (CSCs) in oral cancer cells niche and evaluated the mechanism of Resveratrol nanoparticle (Res-Nano) mediated-reduction of CSCs properties in cells.
Abstract: Tumor associated macrophages in the tumor microenvironment secrete multiple cytokines, which regulate cancer cells growth and invasiveness. We systematically studied the role of cytokines in the induction of cancer stem like cells (CSCs) in oral cancer cells niche and evaluated the mechanism of Resveratrol nanoparticle (Res-Nano) mediated-reduction of CSCs properties in cells. A highly M1-like macrophages-enriched conditioned medium (CM) was generated by treating fixed doses of PMA and LPS in THP-1 cells alone as well as co-cultured of H-357 plus THP-1 cells. These M1-like macrophages increased the production of cytokines (e.g., TNF-α, IL-6, IL-1β, etc.). A CSCs populated environment was created after addition of cytokine-enriched-CM of co-culture of H-357 and THP-1 cells to cancer cells and cytokine enriched CM of THP-1 cells to patient derived primary oral cancer cells, respectively. After incubation with CM, enhancement of stemness, angiogenic and metastatic properties of both H-357 and primary oral cancer cells were noted. Res-NP decreased the cytokines level in CSCs-enriched cells and reduced the invasion, proliferation and growth of CSCs. Representative metastatic (CD133, ALDH1, CXCR4, etc.) and angiogenic markers (MMPs, iNOS, VEGF-A, etc.) were decreased after Res-NP treatment in CSCs enriched oral cancer cells niche. It also disrupted angiogenesis, depleted nitric oxide production in fertilized chick embryos and reduced the expression of metastatic and angiogenic markers in xenograft mice model system. Thus, this study concluded that CSCs-mediated stemness is a cytokine dependent phenomena and treatment of Res-NP inhibit this process in in vitro, in vivo and ex vivo systems.

39 citations


Journal ArticleDOI
TL;DR: Findings suggest that the combination of MET and GEN have beneficial effects against NAFLD in HFD-fed model.
Abstract: Metformin (MET) and genistein (GEN) have a beneficial role in alleviating non-alcoholic fatty liver disease (NAFLD), but their combined effect on this disease has not yet been studied. The present study aimed to investigate the potential protective effects of combined MET and GEN on NAFLD in high-fat diet (HFD) fed mice. C57BL/6 male mice were fed on an HFD for 10 weeks. Animals were then divided into different groups and treated with MET (0.23%), GEN (0.2%) and MET+GEN (0.23% + 0.2%) for 3 months. Treatment with MET and GEN, alone or in combination significantly lowered body and liver weights and fasting blood glucose (FBG) in HFD mice. Combination therapy reduced liver triglyceride (TG) level and this effect was correlated with increased expression of carnitine palmitoyl transferase 1 (CPT1) gene, and reduced expression of fatty-acid synthase (FAS)and sterol regulatory element-binding protein-1c (SREBP-1c) genes. Combination therapy also affects gluconeogenesis pathway through decreasing expression of Glucose 6-phosphatase (G6Pase) and increasing phosphorylation of Glycogen synthase kinase 3β (GSK-3β). Furthermore, combination of MET and GEN ameliorates liver inflammation by switching macrophage into M2 phenotype, decreasing macrophage infiltration, reducing expression of pro-inflammatory cytokines and decreasing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity. In addition, combination therapy enhances phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK). Taken together, these findings suggest that the combination of MET and GEN have beneficial effects against NAFLD in HFD-fed model.

38 citations


Journal ArticleDOI
TL;DR: Rutin, Catechin, Epicatechin exhibit a potent antihyperglycemic activity, their synergistic combination validates a new formulation that could be a real candidate to conventional drugs.
Abstract: Nowadays, synthetic chemical antidiabetic drugs, besides their therapeutic effects, present adverse effects that could be hard to handle over time. In the last decade, studies reported new alternative molecules with more health benefits and less adverse effects. The goal of this study is to optimize a new antidiabetic formulation using plant flavonoids: Catechin, Epicatechin, and Rutin. They are also a powerful antioxidant and anti-inflammatory molecules. A mixture design experiment will optimize their combination to obtain a new, safe multi-targets antidiabetic formulation making it a powerful combination for the management of diabetes and its complications. To study the variation of blood glucose level in response to the treatment over the time we performed an Oral Glucose Tolerance Test. The blood glucose level variations recorded as responses for the mixture design experiment. We used the molecules at a dose of 10 mg/kg. According to the software analysis, the prediction profiler showed us the optimum combination, and the result was a binary combination between Rutin and Epicatechin (25% and 75%, respectively). This combination prevented hyperglycemia and hypoglycemia, along with the best area under the curve, and after that, we validated it through a repeated oral administration on alloxan-induced diabetic mice for 28 d. Rutin, Catechin, and Epicatechin exhibit a potent antihyperglycemic activity, their synergistic combination validates a new formulation that could be a real candidate to conventional drugs.

38 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of sulforaphane on acetaldehyde metabolism and liver fibrosis in HepaRG and LX-2 cells, human hepatoma and hepatic stellate cell lines, respectively, as well as in a mouse model of alcoholic liver disease induced by ethanol plus carbon tetrachloride (EtOH/CCl4).
Abstract: Alcoholic liver disease (ALD)-related fibrosis results from a variety of mechanisms including the accumulation of acetaldehyde, reactive oxygen species, and hepatic overload of endogenous lipopolysaccharide (LPS). Alcohol cessation is the therapeutic mainstay for patients with all stages of ALD, whereas pharmacological strategies for liver fibrosis have not been established. Sulforaphane, a phytochemical found in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) and exerts anticancer, antidiabetic, and antimicrobial effects; however, few studies investigated its efficacy in the development of ALD-related fibrosis. Herein, we investigated the effect of sulforaphane on acetaldehyde metabolism and liver fibrosis in HepaRG and LX-2 cells, human hepatoma and hepatic stellate cell lines, respectively, as well as in a mouse model of alcoholic liver fibrosis induced by ethanol plus carbon tetrachloride (EtOH/CCl4). Sulforaphane treatment induced the activity of acetaldehyde-metabolizing mitochondrial aldehyde dehydrogenase in HepaRG cells and suppressed the acetaldehyde-induced proliferation and profibrogenic activity in LX-2 cells with upregulation of Nrf2-regulated antioxidant genes, including HMOX1, NQO1, and GSTM3. Moreover, sulforaphane attenuated the LPS/toll-like receptor 4-mediated sensitization to transforming growth factor-β with downregulation of NADPH oxidase 1 (NOX1) and NOX4. In EtOH/CCl4-treated mice, oral sulforaphane administration augmented hepatic acetaldehyde metabolism. Additionally, sulforaphane significantly inhibited Kupffer cell infiltration and fibrosis, decreased fat accumulation and lipid peroxidation, and induced Nrf2-regulated antioxidant response genes in EtOH/CCl4-treated mice. Furthermore, sulforaphane treatment blunted hepatic exposure of gut-derived LPS and suppressed hepatic toll-like receptor 4 signaling pathway. Taken together, these results suggest sulforaphane as a novel therapeutic strategy in ALD-related liver fibrosis.

35 citations


Journal ArticleDOI
TL;DR: Curcumin prevents kidney damage in diabetic rats by activating Nrf2, inhibiting Nf-κB, suppressing NADPH oxidase, and downregulating/inhibiting PKCβII/p66Shc axis.
Abstract: This study investigated if the nephroprotective effect of Curcumin in streptozotocin-induced type 1 diabetes mellitus (DM) in rats involves downregulation/inhibition of p66Shc and examined the underlying mechanisms. Rats were divided into 4 groups (n = 12/group) as control, control + Curcumin (100 mg/kg), T1DM, and T1DM + Curcumin. Curcumin was administered orally to control or diabetic rats for 12 weeks daily. As compared to diabetic rats, Curcumin didn't affect either plasma glucose or insulin levels but significantly reduced serum levels of urea, blood urea nitrogen, and creatinine, and concurrently reduced albumin/protein urea and increased creatinine clearance. It also prevented the damage in renal tubules and mitochondria, mesangial cell expansion, the thickness of the basement membrane. Mechanistically, Curcumin reduced mRNA and protein levels of collagen I/III and transforming growth factor- β-1 (TGF-β1), reduced inflammatory cytokines levels, improved markers of mitochondrial function, and suppressed the release of cytochrome-c and the activation of caspase-3. In the kidneys of both control and diabetic rats, Curcumin reduced the levels of reactive oxygen species (ROS), increased mRNA levels of manganese superoxide dismutase (MnSOD) and gamma-glutamyl ligase, increased glutathione (GSH) and protein levels of Bcl-2 and MnSOD, and increased the nuclear levels of nuclear factor2 (Nrf2) and FOXO-3a. Besides, Curcumin reduced the nuclear activity of the nuclear factor-kappa B (NF-κB), downregulated protein kinase CβII (PKCβII), NADPH oxidase, and p66Shc, and decreased the activation of p66Shc. In conclusion, Curcumin prevents kidney damage in diabetic rats by activating Nrf2, inhibiting Nf-κB, suppressing NADPH oxidase, and downregulating/inhibiting PKCβII/p66Shc axis.

33 citations


Journal ArticleDOI
TL;DR: In this article, a review of vegetable colors with specific health benefits is presented, which provides in-hand information about the effect of specific pigment on body organs, the effects of processing on their bioavailability, and recent improvements in colors to ensure a healthy lifestyle.
Abstract: Vegetables are essential protective diet ingredients that supply ample amounts of minerals, vitamins, carbohydrates, proteins, dietary fiber, and various nutraceutical compounds for protection against various disease conditions. Color is the most important quality parameter for the farmers to access the harvest maturity while for the consumer's reliable indices to define acceptability or rejection. The colored vegetables contain functional compounds like chlorophylls, carotenoids, betalains, anthocyanins, etc. well recognized for their antioxidant, antimicrobial, hypolipidemic, neuroprotective, antiaging, diuretic, and antidiabetic properties. Recently, there has been a shift in food consumption patterns from processed to semi-processed or fresh fruits and vegetables to ensure a healthy disease-free life. This shifted the focus of agriculture scientists and food processors from food security to nutrition security. This has resulted in recent improvements to existing crops like blue tomato, orange cauliflower, colored and/or black carrots, with improved color, and thus enriched bioactive compounds. Exhaustive laboratory trials though are required to document and establish their minimum effective concentrations, bioavailability, and specific health benefits. Efforts should also be directed to breed color-rich cultivars or to improve the existing varieties through conventional and molecular breeding approaches. The present review has been devoted to a better understanding of vegetable colors with specific health benefits and to provide in-hand information about the effect of specific pigment on body organs, the effect of processing on their bioavailability, and recent improvements in colors to ensure a healthy lifestyle.

32 citations


Journal ArticleDOI
TL;DR: Resveratrol (RES) has been found to have a protective effect in NDs through the inhibition of microglial activation and the regulation of neuroinflammation.
Abstract: Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), and Parkinson's disease (PD), are characterized by the progressive loss of the structure and function of neurons and most commonly occur in the elderly population. Microglia are resident macrophages of the central nervous system (CNS). The neuroinflammation caused by excessive microglial activation is closely related to the onset and progression of many NDs. Therefore, inhibiting excessive microglial activation is a potential drug target for controlling neuroinflammation. In recent years, natural products as modulators of microglial polarization have attracted considerable attention in the field of NDs therapy. Furthermore, resveratrol (RES) has been found to have a protective effect in NDs through the inhibition of microglial activation and the regulation of neuroinflammation. In this review, we mainly summarize the therapeutic potential of RES and its various molecular mechanisms in the treatment of NDs through the modulation of microglial activation.

30 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the therapeutic potential of resveratrol on sevoflurane-induced cognitive impairment in preclinical and clinical settings, and they found that reserveratrol pretreatment ameliorated SIRT1-NF-κB pathway in microglia.
Abstract: Sevoflurane, the most commonly used inhaled anesthetic in pediatric anesthesia, has been reported to induce cognitive impairment in developing brain in preclinical and clinical settings. However, the mechanism and therapeutic measures of this developmental neurotoxicity need to be further investigated. Resveratrol, a natural polyphenolic agent, has been reported to improve cognitive function in neurological disorders and aging models through anti-inflammatory activity. However, its effect on sevoflurane-induced cognitive impairment in developing mice remains unknown. The present study was designed to investigate the therapeutic potential of resveratrol on sevoflurane-induced cognitive impairment. Six-day-old mice received anesthesia with 3% sevoflurane 2 h daily on postnatal days (P) 6, P7 and P8. About 100 mg/kg resveratrol were intraperitoneally administered for 6 consecutive days to neonatal mice before anesthesia. Sevoflurane exposure significantly suppressed the expression of Sirtuin 1 (SIRT1) and activated microglia in hippocampi. Furthermore, the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were markedly increased after sevoflurane exposure. Strikingly, resveratrol pretreatment ameliorated sevoflurane-induced SIRT1 inhibition and microglial activation. Of note, resveratrol reversed sevoflurane-induced imbalance of M1/M2 microglia ratio revealed by increasing mRNA level of clusters of differentiation 206 (CD206) and decreasing mRNA levels of clusters of differentiation 86 (CD86) and suppressor of cytokine signaling 3 (SOCS3). Consequently, sevoflurane-induced cognitive impairment in developing mice was ameliorated by resveratrol pretreatment. Taken together, repeated sevoflurane exposure to the developing brain resulted in SIRT1 inhibition, NF-κB acetylation, and microglial activation. Resveratrol pretreatment ameliorated cognitive impairment in developing mice received sevoflurane exposure by modulating SIRT1-NF-κB pathway in microglia. In this regard, our findings open novel directions to explore promising therapeutic targets for preventing the developmental neurotoxicity of sevoflurane.

30 citations


Journal ArticleDOI
TL;DR: The use of dietary bioactive compounds, such as phenolic compounds (PC), has emerged as a putative nutritional or therapeutic adjunct approach for COVID-19. as mentioned in this paper, which targets multiple organs through inflammatory, immune, and redox mechanisms, and no effective drug for its prophylaxis or treatment has been identified until now.
Abstract: The outbreak of mysterious pneumonia at the end of 2019 is associated with widespread research interest worldwide. The coronavirus disease-19 (COVID-19) targets multiple organs through inflammatory, immune, and redox mechanisms, and no effective drug for its prophylaxis or treatment has been identified until now. The use of dietary bioactive compounds, such as phenolic compounds (PC), has emerged as a putative nutritional or therapeutic adjunct approach for COVID-19. In the present study, scientific data on the mechanisms underlying the bioactivity of PC and their usefulness in COVID-19 mitigation are reviewed. In addition, antioxidant, antiviral, anti-inflammatory, and immunomodulatory effects of dietary PC are studied. Moreover, the implications of digestion on the putative benefits of dietary PC against COVID-19 are presented by addressing the bioavailability and biotransformation of PC by the gut microbiota. Lastly, safety issues and possible drug interactions of PC and their implications in COVID-19 therapeutics are discussed.

30 citations


Journal ArticleDOI
TL;DR: Although the study did not show consistency in data at molecular and pathphysiological levels between BAT function and obesity, it shows promising health effects of quercetin, accompanied by improved physical activity and gut microbiota dysbiosis.
Abstract: Activating nonshivering thermogenesis in brown adipose tissue (BAT) is a promising strategy to prevent obesity. This study investigated whether quercetin supplementation improves obesity in mice by increasing nonshivering thermogenesis in BAT and white adipose tissue (WAT) browning. Compared to high-fat diet (HFD)-fed mice, mice fed a HFD supplemented with 1% quercetin (HFDQ) had reduced body weight and total plasma cholesterol. In HFDQ-fed mice, retroperitoneal WAT (RWAT) weight was decreased, and browning effect and lipolysis were increased. HFDQ-fed mice had increased expression of nonshivering thermogenesis genes in BAT, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α), cell death-inducing DFFA-like effector A (CIDEA), and mitochondrial transcriptional factor A (mtTFA). Quercetin supplementation increased genes and proteins in β3-adrenergic receptor (ADRB3), p38 mitogen-activated protein kinase (MAPK), and AMP-activated protein kinase (AMPK) pathways in HFD-fed mice, which were suppressed by an AMPK inhibitor or an ADRB3 antagonist. Energy expenditure and core body temperature were not changed by quercetin, but physical activity was increased in HFDQ mice during dark periods at room and cold temperatures. Quercetin also decreased the Firmicutes to Bacteroidetes ratio and increased short-chain fatty acid production in the feces of HFD-fed mice. In summary, quercetin supplementation in HFD-fed mice may attenuate obesity. Although the study did not show consistency in data at molecular and pathophysiological levels between BAT function and obesity, it also shows promising health effects of quercetin, accompanied by improved physical activity and gut microbiota dysbiosis.

28 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that δTE and its metabolite δ-tocotrienol inhibited the multiplicity of large adenomas (>2 mm2) by 34% and 55% (P<.05) compared to the control diet.
Abstract: The gut microbiota play important roles in colon cancer. Vitamin E δ-tocotrienol (δTE) and its metabolite δTE-13'-carboxychromanol (δTE-13') are known to have cancer-preventive effects, but their impact on gut flora during tumorigenesis and the role of the metabolite in δTE's beneficial effects remain to be determined. In the murine colitis-associated colon cancer (CAC) induced by azoxymethane (AOM) and dextran sulfate sodium (DSS), we show that δTE and δTE-13' inhibited the multiplicity of large adenomas (>2 mm2) by 34% (P<.05) and 55% (P<.01), respectively, compared to the control diet. δTE-13' diminished AOM/DSS-increased GM-CSF and MCP-1, and δTE decreased IL-1β. Using 16S rRNA gene sequencing of fecal DNAs, we observe that δTE and δTE-13' modulated the composition but not the richness of gut microbes compared to the control. Both δTE and δTE-13' enhanced potentially beneficial Lactococcus and Bacteroides. The elevation of Lactococcus positively correlated with fecal concentrations of δTE-13' and its hydrogenated metabolite, suggesting that the metabolite may contribute to δTE's modulation of gut microbes. Furthermore, δTE-13' counteracted AOM/DSS-induced depletion of Roseburia that is known to be decreased in patients with inflammatory bowel diseases. δTE uniquely elevated (Eubacterium) coprostanoloigenes. Our study demonstrates that δTE and δTE-13' inhibited tumorigenesis, suppressed pro-inflammatory cytokines and modulated gut microbiota in a murine CAC model. These findings uncover new and distinct activities of δTE and δTE-13' and support the notion that the metabolite may play a role in δTE's anticancer and modulation of gut microbes.

Journal ArticleDOI
TL;DR: In this article, compound probiotic maintained intestinal barrier integrity, blocked lipopolysaccharide (LPS) translocation, and inhibited the activation of TLR4/NF-κB pathway and the production of inflammatory factors in the liver and ileum.
Abstract: Autoimmune hepatitis (AIH) is an immune-mediated type of chronic liver inflammation accompanied by intestinal flora imbalance. Probiotics have been reported to ameliorate imbalances in the intestinal flora. This study aimed to investigate the effects of compound probiotic in the AIH mouse model. AIH mice were gavaged with compound probiotic and injected intraperitoneally with dexamethasone (dex) for 42 days. The results showed that these treatments suppressed hepatic inflammatory cell infiltration, serum transaminase, and Th1 and Th17 cells. However, Treg cells were increased only in the probiotics group, which indicates an immunomodulatory role of the compound probiotic. The compound probiotic maintained intestinal barrier integrity, blocked lipopolysaccharide (LPS) translocation, and inhibited the activation of the TLR4/NF-κB pathway and the production of inflammatory factors in the liver and ileum. Moreover, the compound probiotic treatment increased the abundance of beneficial bacteria and reduced the abundance of potentially harmful bacteria in gut. Compound probiotic may improve ileal barrier function while increasing the diversity of the intestinal flora, blocking the translocation of gut-derived LPS to the liver and therefore preventing activation of the TLR4/NF-κB pathway. The resulting inhibition of pro-inflammatory factor production facilitates AIH remission.

Journal ArticleDOI
TL;DR: The results indicate that intermittent caloric restriction using the modified FMD was effective in the treatment of EAE through ameliorating inflammatory response and promoting recovery of the damaged tissue.
Abstract: Dietary interventions such as fasting have been proved to be effective in the prevention of metabolic and autoimmune diseases as well as aging-related conditions. The complicated interaction between nutrition and immunity has drawn wide attention in recent years. In this study, we investigated the therapeutic effect of intermittent caloric restriction on autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, in mice. EAE was induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein 35–55 peptide. After the EAE symptoms became obvious at the 4th week post-immunization, the mice were administered with a modified fasting-mimicking diet (FMD) at 1/3 cal of control for 3 days, followed by ad libitum with normal chow for 4 days. A total of two cycles of FMD was applied. Compared with the mice without receiving caloric restriction, the mice using FMD had significant decreases in EAE severity, immune cell infiltration in spinal cord and CNS demyelination. FMD administration also reversed EAE-mediated CNS accumulation of total CD4+ T cells and in particular, IFN-γ-producing CD4+ T cells. Moreover, FMD application elevated the cell proliferation rate in CNS and enhanced expression of brain-derived neurotrophic factor (BDNF) and remyelination markers. In conclusion, our results indicate that intermittent caloric restriction using the modified FMD was effective in the treatment of EAE through ameliorating inflammatory response and promoting recovery of the damaged tissue.

Journal ArticleDOI
TL;DR: In this paper, a review comprehensively examines the interplay between diet, gut microbes, and host epigenetics in modulating host health, and evaluates the dietary impact on gut microbiota structure and function that in turn regulates host epigenetic is evaluated in terms of promoting protection from disease development.
Abstract: The mechanisms linking the function of microbes to host health are becoming better defined but are not yet fully understood. One recently explored mechanism involves microbe-mediated alterations in the host epigenome. Consumption of specific dietary components such as fiber, glucosinolates, polyphenols, and dietary fat has a significant impact on gut microbiota composition and function. Microbial metabolism of these dietary components regulates important epigenetic functions that ultimately influences host health. Diet-mediated alterations in the gut microbiome regulate the substrates available for epigenetic modifications like DNA methylation or histone methylation and/or acetylation. In addition, generation of microbial metabolites such as butyrate inhibits the activity of core epigenetic enzymes like histone deacetylases (HDACs). Reciprocally, the host epigenome also influences gut microbial composition. Thus, complex interactions exist between these three factors. This review comprehensively examines the interplay between diet, gut microbes, and host epigenetics in modulating host health. Specifically, the dietary impact on gut microbiota structure and function that in-turn regulates host epigenetics is evaluated in terms of promoting protection from disease development.

Journal ArticleDOI
TL;DR: Results indicate that changes in the gut microbiota induced by a high-sucrose diet would promote the development of NAFLD via its metabolites, such as short-chain fatty acids.
Abstract: Excess sucrose intake has been found to be a major factor in the development of metabolic syndrome, especially in promoting nonalcoholic fatty liver disease. The excess fructose is believed to targets the liver to promote de novo lipogenesis, as described in major biochemistry textbooks. On the contrary, in this study, we explored the possible involvement of gut microbiota in excess sucrose-induced lipid metabolic disorders, to validate a novel mechanism by which excess sucrose causes hepatic lipid metabolic disorders via alterations to the gut microbial community structure. Wistar male rats were fed either a control starch diet or a high-sucrose diet for 4 weeks. Half of the rats in each group were treated with an antibiotic cocktail delivered via drinking water for the entire experimental period. After 4 weeks, rats fed with the high-sucrose diet showed symptoms of fatty liver and hyperlipidemia. The architecture of cecal microbiota was altered in rats fed with high-sucrose diet as compared to the control group, with traits including increased ratios of the phyla Bacteroidetes/Firmicutes, reduced α-diversity, and diurnal oscillations changes. Antibiotic administration rescued high-sucrose diet-induced lipid accumulation in the both blood and liver. Levels of two microbial metabolites, formate and butyrate, were reduced in rats fed with the high-sucrose diet. These volatile short-chain fatty acids might be responsible for the sucrose-induced fatty liver and hyperlipidemia. Our results indicate that changes in the gut microbiota induced by a high-sucrose diet would promote the development of nonalcoholic fatty liver disease via its metabolites, such as short-chain fatty acids.

Journal ArticleDOI
TL;DR: In this article, the authors found that Cu excess activated oxidative stress and autophagy, up-regulated lipogenesis and lipid metabolism, suppressed Keap1 expression and activated Nrf2 signaling.
Abstract: Oxidative stress can induce occurrence of non-alcoholic fatty liver disease (NAFLD). Nrf2 is a central regulator of cellular oxidative stress and also participates in the control of lipid deposition and metabolism. Here, we hypothesize that oxidative stress-mediated Nrf2 activation participates in the regulation of the Cu-induced lipid deposition. We found that Cu excess activated oxidative stress and autophagy, up-regulated lipogenesis and lipid metabolism, suppressed Keap1 expression and activated Nrf2 signaling. Moreover, Cu induced lipid deposition via oxidative stress and the mitochondrial dysfunction. Oxidative stress mediated Cu-induced activation of Nrf2 and autophagy. The activation of autophagy helps to alleviate Cu-induced lipid deposition and accordingly provided a protective role against Cu-induced NAFLD. Meantime, Cu-induced oxidative stress promoted Nrf2 recruitment to the PPARγ promoter, inducing target gene transcription, and subsequent lipogenesis. Our findings, for the first time, provide direct evidences for Nrf2 function in the modulation of lipogenic metabolism via the transcriptional activation of PPARγ, and elucidate the mechanisms by which Nrf2 functions as the central regulator of lipogenic genes and highlights the significance of Nrf2 as potential therapeutic targets for oxidative stress-associated obesity and NAFLD for fish and human beings.

Journal ArticleDOI
TL;DR: By blocking chemokine-mediated migration of DCs and pathogenic T cells into the CNS, naringenin attenuates EAE pathogenesis and might be a potential candidate for the treatment of autoimmune diseases, such as MS and other chronic T-cell mediated autoimmune diseases.
Abstract: Targeting pathogenic immune cell trafficking poses an attractive opportunity to attenuate autoimmune disorders such as multiple sclerosis (MS). MS and its animal model, experimental autoimmune encephalomyelitis (EAE), are characterized by the immune cells-mediated demyelination and neurodegeneration of the central nervous system (CNS). Our previous study has proven that dietary naringenin ameliorates EAE clinical symptoms via reducing the CNS cell infiltration. The present study examined the beneficial effects of naringenin on maintaining the blood-brain barrier in EAE mice via dietary naringenin intervention. The results showed that naringenin-treated EAE mice had an intact blood-CNS barrier by increasing tight junction-associated factors and decreasing Evans Blue dye in the CNS. Naringenin decreased the accumulation and maturation of conventional dendritic cells (cDCs), CCL19, and CCR7 in the CNS. Also, naringenin blocked the chemotaxis and antigen-presenting function of cDCs that resulted in reducing T-cell secreting cytokines (IFN-γ, IL-17, and IL-6) in the spleen. Importantly, naringenin blocked pathogenic T cells infiltrated into the CNS and attenuates passive EAE. Therefore, by blocking chemokine-mediated migration of DCs and pathogenic T cells into the CNS, naringenin attenuates EAE pathogenesis and might be a potential candidate for the treatment of autoimmune diseases, such as MS and other chronic T-cell mediated autoimmune diseases.

Journal ArticleDOI
TL;DR: Treatment with genistein improved Aβ-induced cognitive impairment by attenuation of synaptotoxicity, hyperphosphorylation of Tau, and inactivation of ERK, and treatment with this soy isoflavone did not cause systemic toxicity.
Abstract: Alzheimer's disease is a progressive neurodegenerative disorder characterized by extracellular accumulation of amyloid-beta (Aβ) peptide, which induces synaptic dysfunction, alteration of intracellular signaling pathways, hyperphosphorylation of the Tau protein, and cognitive impairment. Genistein, one of the major isoflavones present in soy and soy products, has been shown to modulate some of the pathogenic events associated with the neurodegeneration process. However, its underlying mechanisms remain to be clarified. Therefore, the objectives of the present study were to evaluate the ability of genistein to protect against Aβ1-42-induced cognitive impairment in rats and to elucidate some of the possible mechanisms involved in its neuroprotective effects in the hippocampus. Male Wistar rats received bilateral intracerebroventricular infusions of Aβ1-42 (2 nmol) and genistein 10 mg/kg orally for 10 days. The Aβ-infused animals showed significant impairment of memory, which was accompanied by the following neurochemical alterations in the hippocampus: decreased levels of the synaptic proteins synaptophysin and postsynaptic density protein 95 (PSD-95), hyperphosphorylation of Tau with increased activation of glycogen synthase kinase-3β and c-Jun N-terminal kinase, and inactivation of ERK. Treatment with genistein improved Aβ-induced cognitive impairment by attenuation of synaptotoxicity, hyperphosphorylation of Tau, and inactivation of ERK. Furthermore, treatment with this soy isoflavone did not cause systemic toxicity. These findings provide further evidence of the neuroprotective effect of genistein in an in vivo model of Aβ toxicity and, importantly, extend the current knowledge concerning the mechanisms associated with the neuroprotective effects of this compound in the hippocampus.

Journal ArticleDOI
TL;DR: In this article, a review aims to discuss different methodologies with examples from reported dietary flavonoids that showed an enhanced anti-cancer efficacy in both in vitro and in vivo models.
Abstract: Over the last two decades, several advancements have been made to improve the therapeutic efficacy of plant flavonoids, especially in cancer treatment. Factors such as low bioavailability, poor flavonoid stability and solubility, ineffective targeted delivery, and chemo-resistance hinder the application of flavonoids in anti-cancer therapy. Many anti-cancer compounds failed in the clinical trials because of unexpected altered clearance of flavonoids, poor absorption after administration, low efficacy, and/or adverse effects. Hence, the current research strategies are focused on improving the therapeutic efficacy of plant flavonoids, especially by enhancing their bioavailability through combination therapy, engineering gut microbiota, regulating flavonoids interaction with adenosine triphosphate binding cassette efflux transporters, and efficient delivery using nanocrystal and encapsulation technologies. This review aims to discuss different methodologies with examples from reported dietary flavonoids that showed an enhanced anti-cancer efficacy in both in vitro and in vivo models. Further, the review discusses the recent progress in biochemical modifications of flavonoids to improve bioavailability, solubility, and therapeutic efficacy.

Journal ArticleDOI
TL;DR: The data suggest that resveratrol can correct the harmful effects of HFD in the brain and may be a potential therapeutic agent against obesity-related disorders and AD pathology.
Abstract: Cumulative evidence indicates that excessive consumption of calories from saturated fat contributes to the development of Alzheimer's disease (AD). Here, we assess the triggering and progression of AD pathology induced by a high-fat diet (HFD), and the effects of resveratrol, a polyphenol found in common dietary sources with pleiotropic neuroprotective activities. Over 16 weeks, male wild type (WT) and AD transgenic 5XFAD mice were fed a control diet, HFD (60% kcal from fat), or HFD supplemented with 0.1% resveratrol. Resveratrol protected against HFD-induced memory loss in WT mice and prevented memory loss in 5XFAD mice. Resveratrol also reduced the amyloid burden aggravated by HFD in 5XFAD, and protected against HFD-induced tau pathology in both WT and 5XFAD strains. At the mechanistic level, resveratrol inhibited the HFD-increased amyloidogenic processing of the amyloid precursor protein in both strains; it also restored abnormal high levels in the proteolytic activity of the ubiquitin-proteasome system induced by HFD, suggesting the presence of a compensatory mechanism to counteract the accumulation of aberrant proteins. Thus, our data suggest that resveratrol can correct the harmful effects of HFD in the brain and may be a potential therapeutic agent against obesity-related disorders and AD pathology.

Journal ArticleDOI
TL;DR: In this paper, the ability of diindolylmethane (DIM), a dietary bioactive rich in cruciferous vegetables, in enhancing the efficacy of Centchroman (CC) by modulating the drug efflux transporters in human breast cancer cells was investigated.
Abstract: Overexpression of drug efflux transporters is commonly associated with multidrug-resistance in cancer therapy. Here for the first time, we investigated the ability of diindolylmethane (DIM), a dietary bioactive rich in cruciferous vegetables, in enhancing the efficacy of Centchroman (CC) by modulating the drug efflux transporters in human breast cancer cells. CC is a selective estrogen receptor modulator, having promising therapeutic efficacy against breast cancer. The combination of DIM and CC synergistically inhibited cell proliferation and induced apoptosis in breast cancer cells. This novel combination has also hindered the stemness of human breast cancer cells. Molecular docking analysis revealed that DIM had shown a strong binding affinity with the substrate-binding sites of ABCB1 (P-gp) and ABCC1 (MRP1) drug-efflux transporters. DIM has increased the intracellular accumulation of Hoechst and Calcein, the substrates of P-gp and MRP1, respectively, in breast cancer cells. Further, DIM stimulates P-gp ATPase activity, which indicates that DIM binds at the substrate-binding domain of P-gp, and thereby inhibits its efflux activity. Intriguingly, DIM enhanced the intracellular concentration of CC by inhibiting the P-gp and MRP1 expression as well as activity. The intracellular retaining of CC has increased its efficacy against breast cancer. Overall, DIM, a dietary bioactive, enhances the anticancer efficiency of CC through modulation of drug efflux ABC-transporters in breast cancer cells. Therefore, DIM-based nutraceuticals and functional foods can be developed as adjuvant therapy against human breast cancer.

Journal ArticleDOI
TL;DR: N-3 PUFAs could prevent obesity by improving TCA cycle homeostasis and mTORC1 signaling pathway may be upstream.
Abstract: The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on preventing obesity are well known; however, the underlying mechanism by which n-3 PUFAs influence tricarboxylic acid (TCA) cycle under obesity remains unclear. We randomly divided male C57BL/6 mice into 5 groups (n=10) and fed for 12 weeks as follows: mice fed a normal diet (Con, 10% kcal); mice fed a high-fat diet (HFD, lard, 60% kcal); and mice fed a high-fat diet (60% kcal) substituting half the lard with safflower oil (SO), safflower oil and fish oil (SF) and fish oil (FO), respectively. Then we treated HepG2 cells with palmitic acid and DHA for 24 h. We found that body weight in FO group was significantly lower than it in HFD and SO groups. N-3 PUFAs reduced the transcription and translation of TCA cycle enzymes, including IDH1, IDH2, SDHA, FH and MDH2, to enhance mitochondrial function in vivo and vitro. DHA significantly inhibited protein expression of the mTORC1 signaling pathway, increased p-AKT protein expression to alleviate insulin resistance and improved mitochondrial oxygen consumption rate and glycolysis ability in HepG2 cells. In addition, the expressions of IDH2 and SDHB were reduced by rapamycin. N-3 PUFAs could prevent obesity by improving TCA cycle homeostasis and mTORC1 signaling pathway may be upstream.

Journal ArticleDOI
TL;DR: Treatment with resveratrol rescued hypertension programmed by combined ADMA and TMAO exposure, accompanied by alterations in the compositions of gut microbiota and increased fecal butyrate levels.
Abstract: Resveratrol, a phytochemical, has shown antioxidant properties and potential benefits in hypertension. Asymmetric dimethylarginine (ADMA)-related nitric oxide deficiency and gut microbiota-derived metabolite trimethylamine-N-oxide (TMAO) have been linked to hypertension. We aimed to test whether maternal resveratrol therapy would protect adult offspring against hypertension programmed by prenatal exposure to ADMA and TMAO. Pregnant Sprague-Dawley rats received ADMA 10 mg/kg/day (A), TMAO 0.65 mg/hr (T), ADMA+TMAO (AT), or vesicle (CV). One group of ADMA+TMAO-exposed rats received 50 mg/L of resveratrol in drinking water during pregnancy and lactation periods (ATR). Male offspring (n = 8/group) were assigned to five groups: CV, A, T, AT, and ATR. Rats were killed at 12 weeks of age. ADMA exposure caused the elevation of blood pressure in 12-week-old male offspring, which was exacerbated by TMAO exposure. Treatment with resveratrol rescued hypertension programmed by combined ADMA and TMAO exposure. This was accompanied by alterations in the compositions of gut microbiota and increased fecal butyrate levels. Both the abundance of the butyrate-producing genera Lachnospiraceae and Ruminococcaceae were augmented by resveratrol. Meanwhile, resveratrol therapy significantly increased the abundance of the Cyanobiaceae and Erysipelotrichaceae families. Moreover, the protective effects of resveratrol were related to the mediation of the renin-angiotensin system . Our data provide new insights into the protective mechanisms of resveratrol against hypertension programmed by ADMA and TMAO, including regulation of gut microbiota and their metabolites, the renin-angiotensin system, and nitric oxide pathway. Resveratrol might be a potential reprogramming strategy to protect against the hypertension of developmental origins.

Journal ArticleDOI
TL;DR: It is suggested that nobiletin alleviates HFD-induced non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction in rats and there might be an association between the observed inhibitory effect ofnobiletin on NAFLD and modulation of AdipoR1 and gp91phox.
Abstract: Nobiletin, one of the polymethoxylated flavonoids isolated from citrus peels, is reported to possess various biological activities. The current study investigates the effect and possible mechanisms of nobiletin on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed rats. Male Sprague-Dawley rats were administrated with HFD and fructose (15%) in drinking water for 16 weeks to induce NAFLD. HFD-fed rats were treated with nobiletin (20 or 40 mg/kg/day) or vehicle for the last 4 weeks. Treatment of HFD-fed rats with nobiletin significantly reduced systolic blood pressure, adiposity, hyperlipidemia, insulin resistance, hepatic lipids content, NAFLD activity score and liver fibrosis. Nobiletin significantly increased plasma adiponectin levels, together with up-regulation of liver adiponectin receptor 1 (AdipoR1) expression. Additionally, decreased malondialdehyde levels and increased superoxide dismutase activity in plasma and hepatic tissue, consistent with down-regulation of liver NADPH oxidase subunit gp91phox expression, were also observed after nobiletin treatment. Furthermore, high dose of nobiletin exhibited higher therapeutic effect as a compared to low dose. These findings suggest that nobiletin alleviates HFD-induced NAFLD and metabolic dysfunction in rats. There might be an association between the observed inhibitory effect of nobiletin on NAFLD and modulation of AdipoR1 and gp91phox.

Journal ArticleDOI
TL;DR: In this article, the authors used a high-sugar and fat (HSB) diet for 12 weeks to induce obesity in C57BL/6 mice and to investigate its effects on the gut microbiota, hypothalamic peptides, and behavior.
Abstract: The high prevalence of obesity and associated metabolic disorders are one of the major public health problems worldwide. Among the main causal factors of obesity, excessive consumption of food rich in sugar and fat stands out due to its high energy density. The regulation of food intake relies on hypothalamic control by the action of several neuropeptides. Excessive consumption of hypercaloric diets has impact in the behavior and in the gut microbiota. In the present study, we used a high-sugar and fat (HSB) diet for 12 weeks to induce obesity in C57BL/6 mice and to investigate its effects on the gut microbiota, hypothalamic peptides, and behavior. We hypothesize that chronic consumption of HSB diet can change the behavior. Additionally, we also hypothesize that changes in gut microbiota can be associated with changes in the transcriptional regulation of hypothalamic peptides and behavior. To evaluate the gut microbiota, we performed the sequencing of 16S rRNA gene, which demonstrate that HSB diet modulates the gut microbiota with an increase in the Firmicutes and Actinobacteria phylum and a decrease of Bacteroidetes phylum. The real time qPCR revealed that HSB-fed mice presented changes in the transcriptional regulation of hypothalamic neuropeptides genes such as Npy, Gal and Galr1. The Marble-burying and Light/dark box tests also showed an alteration in anxiety and impulsive behaviors for the HSB-fed mice. Our data provides evidence that obesity induced by HSB diet consumption is associated with alterations in gut microbiota and behavior, highlighting the multifactorial characteristics of this disease.

Journal ArticleDOI
TL;DR: Novel experimental evidence is provided for the influence of co-treatment with LYCO and HAECs on immunomodulatory capabilities of choroid plexus and it could also warrant therapeutic window for the pathophysiology of AD and the associated underlying mechanisms at the CP.
Abstract: Neuroinflammation characterized by glial activation and release of proinflammatory mediators is considered to be correlated with cognitive deficits in Alzheimer's disease (AD). Previously, some studies have demonstrated that lycopene (LYCO) or human amniotic epithelial cells (HAECs) could attenuate inflammation in AD. Specifically, the choroid plexus (CP), an epithelial layer that forms the blood-cerebrospinal fluid barrier, is able to modulate the cognitive function, through changes in the neuroinflammatory response and in brain immune surveillance. However, it is unclear if LYCO can interact with HAECs to improve neuroinflammation at the CP. Thus, this study chose the region of interest, considered the feasibility of using a combination of LYCO and HAECs, as a therapeutic agent for immunomodulatory effects at the CP in an acutely induced AD rat model. Results showed that oral administration of LYCO, HAECs transplantation, and their combination significantly improved cognitive deficits in water maze test, decreased the level of proinflammatory mediators (TNF-α and IL-1β), increased the level of anti-inflammatory mediators (IL-10 and TGF-β1) in the cerebro-spinal fluid, and hippocampal tissue. Interestingly, LYCO administration, HAECs transplantation and their combination reversed the Aβ1–42 induced up-regulation of Toll like receptor 4 and nuclear factor-κB p65 mRNA and protein expressions at the CP. This study provided the novel experimental evidence for the influence of co-treatment with LYCO and HAECs on immunomodulatory capabilities of CP. It could also warrant therapeutic window for the pathophysiology of AD and the associated underlying mechanisms at the CP.

Journal ArticleDOI
TL;DR: It was demonstrated that lycopene affects the activities of metabolic enzymes in muscle fibers, promotes the expression of slow-twitch fibers and enhanced mitochondrial respiratory capacity, suggesting that Lycopene exerts potential beneficial effects on skeletal muscle metabolism.
Abstract: Increasing studies report that many natural products can participate in formation of muscle fibers. This study aimed to investigate the effect of lycopene on skeletal muscle-fiber type in vivo and in vitro. C2C12 myoblasts were used in vitro study, and the concentration of lycopene was 10 µM. In vivo, 8-week-old male C57/BL6 mice were used and divided into four groups (n=8): (1) ND: normal-fat diet; (2) ND+Lyc: normal-fat diet mixed with 0.33% w/w lycopene; (3) HFD: high-fat diet; and (4) HFD+Lyc: high-fat diet mixed with 0.33% w/w lycopene. The mice tissue samples were collected after 8 weeks feeding. We found that lycopene supplementation enhanced the protein expression of slow-twitch fiber, succinate dehydrogenase, and malic dehydrogenase enzyme activities, whereas lycopene reduced the protein expression of fast-twitch fibers, lactate dehydrogenase, pyruvate kinase enzyme activities. Moreover, lycopene can promote skeletal muscle triglyceride deposition, enhanced the mRNA expression of genes related to lipid synthesis, reduced the mRNA expression of genes related to lipolysis. And high-fat diet-induced dyslipidemia and oxidative stress were attenuated after lycopene supplementation. Additionally, lycopene supplementation reduced the glycolytic reserve but enhanced mitochondrial ATP production in C2C12 cells. These results demonstrated that lycopene affects the activities of metabolic enzymes in muscle fibers, promotes the expression of slow-twitch fibers, and enhanced mitochondrial respiratory capacity. We speculated that lycopene affects the muscle-fiber type through aerobic oxidation, suggesting that lycopene exerts potential beneficial effects on skeletal muscle metabolism.

Journal ArticleDOI
TL;DR: In this paper, a review of the use of phytochemicals as TMAO-reducing agents is presented, which discusses the main mechanisms by which Trimethylamine-N-oxide (TMAO) promotes CVD, including modulation of lipid and bile acid metabolism, and the promotion of endothelial dysfunction and oxidative stress.
Abstract: Trimethylamine-N-oxide (TMAO) has been reported as a risk factor for atherosclerosis development, as well as for other cardiovascular disease (CVD) pathologies. The objective of this review is to provide a useful summary on the use of phytochemicals as TMAO-reducing agents. This review discusses the main mechanisms by which TMAO promotes CVD, including the modulation of lipid and bile acid metabolism, and the promotion of endothelial dysfunction and oxidative stress. Current knowledge on the available strategies to reduce TMAO formation are discussed, highlighting the effect and potential of phytochemicals. Overall, phytochemicals (i.e., phenolic compounds or glucosinolates) reduce TMAO formation by modulating gut microbiota composition and/or function, inhibiting host's capacity to metabolize TMA to TMAO, or a combination of both. Perspectives for design of future studies involving phytochemicals as TMAO-reducing agents are discussed. Overall, the information provided by this review outlines the current state of the art of the role of phytochemicals as TMAO reducing agents, providing valuable insight to further advance in this field of study.

Journal ArticleDOI
TL;DR: In this article, the effects of vitamin D on the inflammatory cells and their therapeutic relevance in pulmonary diseases are dissected, and a review of the effects on inflammatory cells is presented.
Abstract: Vitamin D is customarily involved in maintaining bone and calcium homeostasis. However, contemporary studies have identified the implication of vitamin D in several cellular processes including cellular proliferation, differentiation, wound healing, repair and regulatory systems inclusive of host defence, immunity, and inflammation. Multiple studies have indicated corelations between low serum levels of vitamin D, perturbed pulmonary functions and enhanced incidences of inflammatory diseases. Almost all of the pulmonary diseases including acute lung injury, cystic fibrosis, asthma, COPD, Pneumonia and Tuberculosis, all are inflammatory in nature. Studies have displayed strong inter-relations with vitamin D deficiency and progression of lung disorders; however, the underlying mechanism is still unknown. Vitamin D has emerged to possess inhibiting effects on pulmonary inflammation while exaggerating innate immune defenses by strongly influencing functions of inflammatory cells including dendritic cells, monocyte/macrophages, T cells, and B cells along with structural epithelial cells. This review dissects the effects of vitamin D on the inflammatory cells and their therapeutic relevance in pulmonary diseases. Although, the data obtained is very limited and needs further corroboration but presents an exciting area of further research. This is because of its ease of supplementation and development of personalized medicine which could lead us to an effective adjunct and cost-effective method of therapeutic modality for highly fatal pulmonary diseases.

Journal ArticleDOI
TL;DR: The authors investigated the effects of SCFA supplementation on gut inflammation and microbiota composition in a murine colitis model and found that SCFA did not result in a significant reduction in colon inflammation, but it promoted both regulatory T cell and IL-17-producing T cell expression and increased both protective and aggressive gut microbiota.
Abstract: Short-chain fatty acids (SCFAs) play a pivotal role in maintaining intestinal homeostasis. We aimed to investigate the effects of SCFA supplementation on gut inflammation and microbiota composition in a murine colitis model. Mice were fed with sodium butyrate or a mixture of SCFAs in the drinking water for 2 weeks, followed by 2% dextran sulfate sodium (DSS) for 7 days. After euthanasia, mouse colons were extracted to examine histological findings. Flow cytometry of the mouse colon tissues was performed to assess T cell differentiation. Changes in gut microbiota were assessed by high-throughput sequencing of the mouse feces. There were no significant differences in weight change, colonic length, or histologic inflammation score between the DSS, butyrate, and SCFA mix groups. However, flow cytometry revealed that both the expression of CD4+Foxp3+ regulatory T cells and of IL-17-producing T cells were increased in the butyrate and SCFA mix groups. Microbial compositions of the butyrate and SCFA mix groups were significantly different from those of the control and DSS groups in principal coordinate analysis. Relative abundances of the phyla Verrucomicrobia and Proteobacteria, species Akkermansia muciniphila and Escherichia fergusonii were increased in the butyrate and SCFA mix groups. Genera Roseburia and Lactobacillus showed a negative correlation with the degree of colitis, whereas genera Escherichia and Mucispirillum showed a positive correlation. SCFA supplementation did not result in a significant reduction in colon inflammation, but it promoted both regulatory T cell and IL-17-producing T cell expression, and increased both protective and aggressive gut microbiota.