scispace - formally typeset
Search or ask a question
Institution

University of Medicine and Health Sciences

EducationBasseterre, Saint Kitts and Nevis
About: University of Medicine and Health Sciences is a education organization based out in Basseterre, Saint Kitts and Nevis. It is known for research contribution in the topics: Medicine & Population. The organization has 2777 authors who have published 2513 publications receiving 18547 citations.


Papers
More filters
Journal ArticleDOI
Haramaya University1, Université de Moncton2, Université de Montréal3, National Heart Foundation of Australia4, University of Ibadan5, University of La Frontera6, University of Cuenca7, University of Waterloo8, University of the Republic9, Ghent University10, National Taiwan University11, Karolinska Institutet12, University of Ottawa13, Technische Universität München14, University of the Witwatersrand15, University of Cape Town16, Swansea University17, Lithuanian Sports University18, Emory University19, University of Los Andes20, Central University of Venezuela21, Hong Kong Baptist University22, Qatar Airways23, University of Tartu24, University of Regina25, Mahidol University26, The Chinese University of Hong Kong27, Pennington Biomedical Research Center28, University of Queensland29, Seoul National University30, Queen's University31, Linköping University32, University of Medicine and Health Sciences33, University of Guadalajara34, Shanghai University of Sport35, National University of Science and Technology36, University of Primorska37, University of Porto38, University of Ghana39, University of Strathclyde40, University of Girona41, Carlos III Health Institute42, Universidade Federal de Santa Catarina43, Katholieke Universiteit Leuven44, University of South Australia45, University of Southern Denmark46, University of Auckland47, Bath Spa University48, University of Ljubljana49, Tribhuvan University50, Utrecht University51, J. F. Oberlin University52, University of Botswana53, Stamford University Bangladesh54, National Chung Hsing University55, University of Warsaw56
TL;DR: The present study provides rich new evidence showing that the situation regarding the physical activity of children and youth is a concern worldwide and strategic public investments to implement effective interventions to increase physical activity opportunities are needed.
Abstract: Background: Accumulating sufficient moderate to vigorous physical activity is recognized as a key determinant of physical, physiological, developmental, mental, cognitive, and social health among children and youth (aged 5–17 y). The Global Matrix 3.0ofReportCardgradesonphysicalactivitywasdevelopedtoachieveabetterunderstandingoftheglobalvariationinchildand youth physical activity and associated supports. Methods: Work groups from 49 countries followed harmonized procedures to develop their Report Cards by grading 10 common indicators using the best available data. The participating countries were divided into 3 categories using the United Nations’ human development index (HDI) classification (low or medium, high, and very high HDI). Results: A total of 490 grades, including 369 letter grades and 121 incomplete grades, were assigned by the 49 work groups. Overall, an average grade of “C−,”“D+,” and “C−” was obtained for the low and medium HDI countries, high HDI countries, and very high HDI countries, respectively. Conclusions: The present study provides rich new evidence showing that the situation regarding the physical activity of children and youth is a concern worldwide. Strategic public investments to implement effective interventions to increase physical activity opportunities are needed.

502 citations

Journal ArticleDOI
Claudio L. Afonso1, Gaya K. Amarasinghe2, Krisztián Bányai3, Yīmíng Bào4, Christopher F. Basler5, Sina Bavari6, Nicolás Bejerman, Kim R. Blasdell7, François Xavier Briand, Thomas Briese8, Alexander Bukreyev9, Charles H. Calisher10, Kartik Chandran11, Jiāsēn Chéng12, Anna N. Clawson4, Peter L. Collins4, Ralf G. Dietzgen13, Olga Dolnik14, Leslie L. Domier15, Ralf Dürrwald, John M. Dye6, Andrew J. Easton16, Hideki Ebihara4, Szilvia L. Farkas3, Juliana Freitas-Astúa17, Pierre Formenty18, Ron A. M. Fouchier19, Yanping Fu12, Elodie Ghedin20, Michael M. Goodin21, Roger Hewson22, Masayuki Horie23, Timothy H. Hyndman24, Dàohóng Jiāng12, E. W. Kitajima25, Gary P. Kobinger26, Hideki Kondo27, Gael Kurath28, Robert A. Lamb29, Sergio Lenardon, Eric M. Leroy, C. Li, Xian Dan Lin30, Lìjiāng Liú12, Ben Longdon31, Szilvia Marton3, Andrea Maisner14, Elke Mühlberger32, Sergey V. Netesov33, Norbert Nowotny34, Norbert Nowotny35, Jean L. Patterson36, Susan Payne37, Janusz T. Paweska, Richard E. Randall38, Bertus K. Rima39, Paul A. Rota30, Dennis Rubbenstroth40, Martin Schwemmle40, Mang Shi41, Sophie J. Smither42, Mark D. Stenglein10, David M. Stone, Ayato Takada43, Calogero Terregino, Robert B. Tesh9, Jun Hua Tian30, Keizo Tomonaga44, Noël Tordo45, Jonathan S. Towner30, Nikos Vasilakis9, Martin Verbeek46, Viktor E. Volchkov47, Victoria Wahl-Jensen, John A. Walsh16, Peter J. Walker7, David Wang2, Lin-Fa Wang48, Thierry Wetzel, Anna E. Whitfield49, Jiǎtāo Xiè12, Kwok-Yung Yuen50, Yong-Zhen Zhang41, Jens H. Kuhn4 
United States Department of Agriculture1, Washington University in St. Louis2, Hungarian Academy of Sciences3, National Institutes of Health4, Georgia State University5, United States Army Medical Research Institute of Infectious Diseases6, Commonwealth Scientific and Industrial Research Organisation7, Columbia University8, University of Texas Medical Branch9, Colorado State University10, Yeshiva University11, Huazhong Agricultural University12, University of Queensland13, University of Marburg14, University of Illinois at Urbana–Champaign15, University of Warwick16, Empresa Brasileira de Pesquisa Agropecuária17, World Health Organization18, Erasmus University Rotterdam19, New York University20, University of Kentucky21, Public Health England22, Kagoshima University23, Murdoch University24, University of São Paulo25, Public Health Agency of Canada26, Okayama University27, United States Geological Survey28, Northwestern University29, Centers for Disease Control and Prevention30, University of Cambridge31, Boston University32, Novosibirsk State University33, University of Medicine and Health Sciences34, University of Veterinary Medicine Vienna35, Texas Biomedical Research Institute36, Texas A&M University37, University of St Andrews38, Queen's University Belfast39, University of Freiburg40, Chinese Center for Disease Control and Prevention41, Defence Science and Technology Laboratory42, Hokkaido University43, Kyoto University44, Pasteur Institute45, Wageningen University and Research Centre46, University of Lyon47, National University of Singapore48, Kansas State University49, University of Hong Kong50
TL;DR: The updated taxonomy of the order Mononegavirales is presented as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Abstract: In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

404 citations

Journal ArticleDOI
TL;DR: The structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours are discussed.
Abstract: The PI3 K/AKT/mTOR signalling pathway plays an important role in the regulation of signal transduction and biological processes such as cell proliferation, apoptosis, metabolism and angiogenesis. Compared with those of other signalling pathways, the components of the PI3K/AKT/mTOR signalling pathway are complicated. The regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway are important in many human diseases, including ischaemic brain injury, neurodegenerative diseases, and tumours. PI3K/AKT/mTOR signalling pathway inhibitors include single-component and dual inhibitors. Numerous PI3K inhibitors have exhibited good results in preclinical studies, and some have been clinically tested in haematologic malignancies and solid tumours. In this review, we briefly summarize the results of research on the PI3K/AKT/mTOR pathway and discuss the structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours.

361 citations

Journal ArticleDOI
Gaya K. Amarasinghe1, María A. Ayllón2, Yīmíng Bào3, Christopher F. Basler4, Sina Bavari5, Kim R. Blasdell6, Thomas Briese7, Paul Brown, Alexander Bukreyev8, Anne Balkema-Buschmann9, Ursula J. Buchholz10, Camila Chabi-Jesus11, Kartik Chandran12, Chiara Chiapponi, Ian Crozier10, Rik L. de Swart13, Ralf G. Dietzgen14, Olga Dolnik15, Jan Felix Drexler16, Ralf Dürrwald17, William G. Dundon18, W. Paul Duprex19, John M. Dye5, Andrew J. Easton20, Anthony R. Fooks, Pierre Formenty21, Ron A. M. Fouchier13, Juliana Freitas-Astúa22, Anthony Griffiths23, Roger Hewson24, Masayuki Horie25, Timothy H. Hyndman26, Dàohóng Jiāng27, E. W. Kitajima28, Gary P. Kobinger29, Hideki Kondō30, Gael Kurath31, Ivan V. Kuzmin32, Robert A. Lamb33, Antonio Lavazza, Benhur Lee34, Davide Lelli, Eric M. Leroy35, Jiànróng Lǐ36, Piet Maes37, Shin-Yi Lee Marzano38, Ana Moreno, Elke Mühlberger23, Sergey V. Netesov39, Norbert Nowotny40, Norbert Nowotny41, Are Nylund42, Arnfinn Lodden Økland42, Gustavo Palacios5, Bernadett Pályi, Janusz T. Paweska, Susan Payne43, Alice Prosperi, Pedro Luis Ramos-González11, Bertus K. Rima44, Paul A. Rota45, Dennis Rubbenstroth9, Mǎng Shī46, Peter Simmonds47, Sophie J. Smither48, Enrica Sozzi, Kirsten Spann49, Mark D. Stenglein50, David M. Stone, Ayato Takada51, Robert B. Tesh8, Keizō Tomonaga25, Noël Tordo52, Jonathan S. Towner45, Bernadette G. van den Hoogen13, Nikos Vasilakis8, Victoria Wahl, Peter J. Walker14, Lin-Fa Wang53, Anna E. Whitfield54, John V. Williams19, F. Murilo Zerbini55, Tāo Zhāng3, Yong-Zhen Zhang56, Yong-Zhen Zhang57, Jens H. Kuhn10 
Washington University in St. Louis1, Technical University of Madrid2, Beijing Institute of Genomics3, Georgia State University4, United States Army Medical Research Institute of Infectious Diseases5, Commonwealth Scientific and Industrial Research Organisation6, Columbia University7, University of Texas Medical Branch8, Friedrich Loeffler Institute9, National Institutes of Health10, Instituto Biológico11, Albert Einstein College of Medicine12, Erasmus University Rotterdam13, University of Queensland14, University of Marburg15, Humboldt University of Berlin16, Robert Koch Institute17, International Atomic Energy Agency18, University of Pittsburgh19, University of Warwick20, World Health Organization21, Empresa Brasileira de Pesquisa Agropecuária22, Boston University23, Public Health England24, Kyoto University25, Murdoch University26, Huazhong Agricultural University27, University of São Paulo28, Laval University29, Okayama University30, United States Geological Survey31, United States Department of Agriculture32, Northwestern University33, Icahn School of Medicine at Mount Sinai34, Institut de recherche pour le développement35, Ohio State University36, Katholieke Universiteit Leuven37, South Dakota State University38, Novosibirsk State University39, University of Medicine and Health Sciences40, University of Veterinary Medicine Vienna41, University of Bergen42, Texas A&M University43, Queen's University Belfast44, Centers for Disease Control and Prevention45, University of Sydney46, University of Oxford47, Defence Science and Technology Laboratory48, Queensland University of Technology49, Colorado State University50, Hokkaido University51, Pasteur Institute52, National University of Singapore53, North Carolina State University54, Universidade Federal de Viçosa55, Fudan University56, Chinese Center for Disease Control and Prevention57
TL;DR: The updated taxonomy of the order Mononegavirales is presented as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Abstract: In February 2019, following the annual taxon ratification vote, the order Mononegavirales was amended by the addition of four new subfamilies and 12 new genera and the creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

238 citations

Journal ArticleDOI
TL;DR: The latest immuno PET imaging strategies and their preclinical and clinical applications are presented and current conjugation strategies that can be leveraged to develop next-generation immunoPET probes are emphasized.
Abstract: Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.

231 citations


Authors

Showing all 2778 results

NameH-indexPapersCitations
Peng Huang9559039098
Dimitri P. Mikhailidis95131343098
Fergal J. O'Brien7531720104
Robert A. Byrne7237024255
Tom Fahey6837516076
Jianping Ye6519415301
Alejandro R. Jadad6117743175
Samuel B. Ho6022713077
Jesse M. Pines5839813860
Daniel J. Kelly572399216
Norbert Nowotny5626111623
Raymond L. Stallings551769897
David C. Henshall5522910058
Dawei Zhang5483012618
Wei Yao532419033
Network Information
Related Institutions (5)
Capital Medical University
47.2K papers, 811.2K citations

84% related

University Medical Center Groningen
30.3K papers, 967K citations

84% related

Sun Yat-sen University
113.7K papers, 2.2M citations

83% related

Hannover Medical School
27.4K papers, 1M citations

83% related

King Saud University
57.9K papers, 1M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202215
2021906
2020623
2019405
2018276
2017177