scispace - formally typeset
Search or ask a question

Showing papers in "Nature Cell Biology in 2018"


Journal ArticleDOI
TL;DR: This work reports the insulin-like growth factor 2 mRNA-binding proteins as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence, and identifies IGF2BPs as an additional class of N6-methyladenosine (m 6A) reader proteins.
Abstract: N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic messenger RNAs (mRNAs) and is interpreted by its readers, such as YTH domain-containing proteins, to regulate mRNA fate. Here, we report the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; including IGF2BP1/2/3) as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence. In contrast to the mRNA-decay-promoting function of YTH domain-containing family protein 2, IGF2BPs promote the stability and storage of their target mRNAs (for example, MYC) in an m6A-dependent manner under normal and stress conditions and therefore affect gene expression output. Moreover, the K homology domains of IGF2BPs are required for their recognition of m6A and are critical for their oncogenic functions. Thus, our work reveals a different facet of the m6A-reading process that promotes mRNA stability and translation, and highlights the functional importance of IGF2BPs as m6A readers in post-transcriptional gene regulation and cancer biology.

1,373 citations


Journal ArticleDOI
TL;DR: It is shown that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations, and three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions.
Abstract: The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90–120 nm; small exosome vesicles, Exo-S, 60–80 nm) and discovered an abundant population of non-membranous nanoparticles termed ‘exomeres’ (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique N-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations.

988 citations


Journal ArticleDOI
TL;DR: This Review discusses how mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis and function as hubs for metabolic waste management.
Abstract: Although classically appreciated for their role as the powerhouse of the cell, the metabolic functions of mitochondria reach far beyond bioenergetics. In this Review, we discuss how mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis and function as hubs for metabolic waste management. We address the importance of these roles in both normal physiology and in disease.

786 citations


Journal ArticleDOI
TL;DR: In this Review, Tavernarakis and colleagues describe recent advances in delineating the molecular mechanisms that mediate mitophagy, and discuss the complex roles of this pathway in physiological and pathological contexts.
Abstract: Mitophagy is an evolutionarily conserved cellular process to remove dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial number and preserving energy metabolism. In this Review, we survey recent advances towards elucidating the molecular mechanisms that mediate mitochondrial elimination and the signalling pathways that govern mitophagy. We consider the contributions of mitophagy in physiological and pathological contexts and discuss emerging findings, highlighting the potential value of mitophagy modulation in therapeutic intervention.

724 citations


Journal ArticleDOI
TL;DR: Different types of selective autophagy are discussed, emphasizing the role of ligand receptors and scaffold proteins in providing cargo specificity, and unanswered questions in the field are highlighted.
Abstract: Macroautophagy, initially described as a non-selective nutrient recycling process, is essential for the removal of multiple cellular components. In the past three decades, selective autophagy has been characterized as a highly regulated and specific degradation pathway for removal of unwanted cytosolic components and damaged and/or superfluous organelles. Here, we discuss different types of selective autophagy, emphasizing the role of ligand receptors and scaffold proteins in providing cargo specificity, and highlight unanswered questions in the field.

713 citations


Journal ArticleDOI
TL;DR: How the transcriptional regulators YAP and TAZ integrate mechanical cues with the response to soluble signals and metabolic pathways to control multiple aspects of cell behaviour, including proliferation, cell plasticity and stemness essential for tissue regeneration is reviewed.
Abstract: Cell behaviour is strongly influenced by physical, mechanical contacts between cells and their extracellular matrix. We review how the transcriptional regulators YAP and TAZ integrate mechanical cues with the response to soluble signals and metabolic pathways to control multiple aspects of cell behaviour, including proliferation, cell plasticity and stemness essential for tissue regeneration. Corruption of cell-environment interplay leads to aberrant YAP and TAZ activation that is instrumental for multiple diseases, including cancer.

582 citations


Journal ArticleDOI
TL;DR: Investigation of human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex reveals reduced m6A mRNA methylation as an oncogenic mechanism in endometricrial cancer and identifies m 6A methylationAs a regulator of AKT signalling.
Abstract: N6-methyladenosine (m6A) messenger RNA methylation is a gene regulatory mechanism affecting cell differentiation and proliferation in development and cancer. To study the roles of m6A mRNA methylation in cell proliferation and tumorigenicity, we investigated human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex (METTL14). We found that about 70% of endometrial tumours exhibit reductions in m6A methylation that are probably due to either this METTL14 mutation or reduced expression of METTL3, another component of the methyltransferase complex. These changes lead to increased proliferation and tumorigenicity of endometrial cancer cells, likely through activation of the AKT pathway. Reductions in m6A methylation lead to decreased expression of the negative AKT regulator PHLPP2 and increased expression of the positive AKT regulator mTORC2. Together, these results reveal reduced m6A mRNA methylation as an oncogenic mechanism in endometrial cancer and identify m6A methylation as a regulator of AKT signalling.

492 citations


Journal ArticleDOI
TL;DR: It is shown that BAP1 suppresses SLC7A11 expression and cystine uptake, thereby promoting ferroptosis and inhibiting tumour growth and uncovering a previously unappreciated epigenetic mechanism coupling ferroPTosis to tumour suppression.
Abstract: The roles and regulatory mechanisms of ferroptosis (a non-apoptotic form of cell death) in cancer remain unclear The tumour suppressor BRCA1-associated protein 1 (BAP1) encodes a nuclear deubiquitinating enzyme to reduce histone 2A ubiquitination (H2Aub) on chromatin Here, integrated transcriptomic, epigenomic and cancer genomic analyses link BAP1 to metabolism-related biological processes, and identify cystine transporter SLC7A11 as a key BAP1 target gene in human cancers Functional studies reveal that BAP1 decreases H2Aub occupancy on the SLC7A11 promoter and represses SLC7A11 expression in a deubiquitinating-dependent manner, and that BAP1 inhibits cystine uptake by repressing SLC7A11 expression, leading to elevated lipid peroxidation and ferroptosis Furthermore, we show that BAP1 inhibits tumour development partly through SLC7A11 and ferroptosis, and that cancer-associated BAP1 mutants lose their abilities to repress SLC7A11 and to promote ferroptosis Together, our results uncover a previously unappreciated epigenetic mechanism coupling ferroptosis to tumour suppression

478 citations


Journal ArticleDOI
TL;DR: In this Perspective, Mizushima describes the leaps and bounds in the history of autophagy and discusses unanswered questions driving the field forward.
Abstract: The field of autophagy research has developed rapidly since the first description of the process in the 1960s and the identification of autophagy genes in the 1990s. Autophagy is now increasingly studied at the level of organismal pathophysiology and is being connected to the medical sciences. This Historical Perspective describes a brief history of autophagy and discusses unanswered cell biological questions in the field.

459 citations


Journal ArticleDOI
TL;DR: The role of autophagy in cell death is reviewed and howAutophagy interfaces with other forms of cell death including apoptosis and necrosis is examined, as well as engulfment and inflammation.
Abstract: Autophagy influences cell survival through maintenance of cell bioenergetics and clearance of protein aggregates and damaged organelles Several lines of evidence indicate that autophagy is a multifaceted regulator of cell death, but controversy exists over whether autophagy alone can drive cell death under physiologically relevant circumstances Here, we review the role of autophagy in cell death and examine how autophagy interfaces with other forms of cell death including apoptosis and necrosis

439 citations


Journal ArticleDOI
TL;DR: How the bi-directional relationship of cell–tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions is discussed.
Abstract: Cell migration is an adaptive process that depends on and responds to physical and molecular triggers. Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding, proteolytic remodelling and jamming transitions. Here we discuss how the bi-directional relationship of cell-tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions.

Journal ArticleDOI
TL;DR: Recent findings that support a direct role of the nucleus in cellular mechanosensing and methods to study nuclear mechanotransduction are discussed.
Abstract: The ability of cells to respond to mechanical forces is critical for numerous biological processes. Emerging evidence indicates that external mechanical forces trigger changes in nuclear envelope structure and composition, chromatin organization and gene expression. However, it remains unclear if these processes originate in the nucleus or are downstream of cytoplasmic signals. Here we discuss recent findings that support a direct role of the nucleus in cellular mechanosensing and highlight novel tools to study nuclear mechanotransduction.

Journal ArticleDOI
TL;DR: Recent advances in single-cell technologies are reviewed and discussed in detail how they can be leveraged to understand tumour heterogeneity and metastasis.
Abstract: Tumours comprise a heterogeneous collection of cells with distinct genetic and phenotypic properties that can differentially promote progression, metastasis and drug resistance. Emerging single-cell technologies provide a new opportunity to profile individual cells within tumours and investigate what roles they play in these processes. This Review discusses key technological considerations for single-cell studies in cancer, new findings using single-cell technologies and critical open questions for future applications.

Journal ArticleDOI
TL;DR: How stressors influence mitochondria components, and how they contribute to the complex adaptive and pathological responses that lead to disease are discussed.
Abstract: Mitochondria sense and respond to many stressors and can support cell survival or death through energy production and signalling pathways. Mitochondrial responses depend on fusion–fission dynamics that dilute and segregate damaged mitochondria. Mitochondrial motility and inter-organellar interactions, such as with the endoplasmic reticulum, also function in cellular adaptation to stress. In this Review, we discuss how stressors influence these components, and how they contribute to the complex adaptive and pathological responses that lead to disease.

Journal ArticleDOI
TL;DR: It is shown that endogenous aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours, and that metformin depletes aspartates to limit tumour growth.
Abstract: As oxygen is essential for many metabolic pathways, tumour hypoxia may impair cancer cell proliferation1-4. However, the limiting metabolites for proliferation under hypoxia and in tumours are unknown. Here, we assessed proliferation of a collection of cancer cells following inhibition of the mitochondrial electron transport chain (ETC), a major metabolic pathway requiring molecular oxygen5. Sensitivity to ETC inhibition varied across cell lines, and subsequent metabolomic analysis uncovered aspartate availability as a major determinant of sensitivity. Cell lines least sensitive to ETC inhibition maintain aspartate levels by importing it through an aspartate/glutamate transporter, SLC1A3. Genetic or pharmacologic modulation of SLC1A3 activity markedly altered cancer cell sensitivity to ETC inhibitors. Interestingly, aspartate levels also decrease under low oxygen, and increasing aspartate import by SLC1A3 provides a competitive advantage to cancer cells at low oxygen levels and in tumour xenografts. Finally, aspartate levels in primary human tumours negatively correlate with the expression of hypoxia markers, suggesting that tumour hypoxia is sufficient to inhibit ETC and, consequently, aspartate synthesis in vivo. Therefore, aspartate may be a limiting metabolite for tumour growth, and aspartate availability could be targeted for cancer therapy.

Journal ArticleDOI
TL;DR: It is reported that tRNA methyltransferase Dnmt2 is required for sperm small-non-coding-RNA-mediated transmission of paternal metabolic disorders to the offspring and that DnMT2-mediated m5C contributes to the secondary structure and biological properties of sncRNAs, implicating sperm RNA modifications as an additional layer of paternal hereditary information.
Abstract: The discovery of RNAs (for example, messenger RNAs, non-coding RNAs) in sperm has opened the possibility that sperm may function by delivering additional paternal information aside from solely providing the DNA 1 . Increasing evidence now suggests that sperm small non-coding RNAs (sncRNAs) can mediate intergenerational transmission of paternally acquired phenotypes, including mental stress2,3 and metabolic disorders4-6. How sperm sncRNAs encode paternal information remains unclear, but the mechanism may involve RNA modifications. Here we show that deletion of a mouse tRNA methyltransferase, DNMT2, abolished sperm sncRNA-mediated transmission of high-fat-diet-induced metabolic disorders to offspring. Dnmt2 deletion prevented the elevation of RNA modifications (m5C, m2G) in sperm 30-40 nt RNA fractions that are induced by a high-fat diet. Also, Dnmt2 deletion altered the sperm small RNA expression profile, including levels of tRNA-derived small RNAs and rRNA-derived small RNAs, which might be essential in composing a sperm RNA 'coding signature' that is needed for paternal epigenetic memory. Finally, we show that Dnmt2-mediated m5C contributes to the secondary structure and biological properties of sncRNAs, implicating sperm RNA modifications as an additional layer of paternal hereditary information.

Journal ArticleDOI
TL;DR: It is shown that exosomal miR-105 derived from cancer cells confers metabolic plasticity in recipient cancer-associated fibroblasts to adapt to nutrient-replete and -deplete conditions, thereby sustaining tumour growth.
Abstract: Cancer and other cells residing in the same niche engage various modes of interactions to synchronize and buffer the negative effects of environmental changes. Extracellular microRNAs (miRNAs) have recently been implicated in the intercellular crosstalk. Here we show a mechanistic model involving breast-cancer-secreted, extracellular-vesicle-encapsulated miR-105, which is induced by the oncoprotein MYC in cancer cells and, in turn, activates MYC signalling in cancer-associated fibroblasts (CAFs) to induce a metabolic program. This results in the capacity of CAFs to display different metabolic features in response to changes in the metabolic environment. When nutrients are sufficient, miR-105-reprogrammed CAFs enhance glucose and glutamine metabolism to fuel adjacent cancer cells. When nutrient levels are low and metabolic by-products accumulate, these CAFs detoxify metabolic wastes, including lactic acid and ammonium, by converting them into energy-rich metabolites. Thus, the miR-105-mediated metabolic reprogramming of stromal cells contributes to sustained tumour growth by conditioning the shared metabolic environment.

Journal ArticleDOI
TL;DR: Reduced SHLD1/2 expression in human breast cancers displaying intrinsic or acquired PARP-inhibitor resistance is documented, highlighting this potential for patient stratification and yield new treatment opportunities.
Abstract: BRCA1 deficiencies cause breast, ovarian, prostate and other cancers, and render tumours hypersensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. To understand the resistance mechanisms, we conducted whole-genome CRISPR-Cas9 synthetic-viability/resistance screens in BRCA1-deficient breast cancer cells treated with PARP inhibitors. We identified two previously uncharacterized proteins, C20orf196 and FAM35A, whose inactivation confers strong PARP-inhibitor resistance. Mechanistically, we show that C20orf196 and FAM35A form a complex, 'Shieldin' (SHLD1/2), with FAM35A interacting with single-stranded DNA through its C-terminal oligonucleotide/oligosaccharide-binding fold region. We establish that Shieldin acts as the downstream effector of 53BP1/RIF1/MAD2L2 to promote DNA double-strand break (DSB) end-joining by restricting DSB resection and to counteract homologous recombination by antagonizing BRCA2/RAD51 loading in BRCA1-deficient cells. Notably, Shieldin inactivation further sensitizes BRCA1-deficient cells to cisplatin, suggesting how defining the SHLD1/2 status of BRCA1-deficient tumours might aid patient stratification and yield new treatment opportunities. Highlighting this potential, we document reduced SHLD1/2 expression in human breast cancers displaying intrinsic or acquired PARP-inhibitor resistance.

Journal ArticleDOI
TL;DR: It is shown that targeting the SHP2 phosphatase (encoded by PTPN11) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS–GTP-dependent oncogenic BRAF, NF1 loss or nucleotide-cycling oncogenesis RAS.
Abstract: Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAFV600E-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS-GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRASG12C). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS-GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS-GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.

Journal ArticleDOI
TL;DR: It is demonstrated that H3K9me3-dependent heterochromatin undergoes dramatic reprogramming during early embryonic development and provide valuable resources for further exploration of the epigenetic mechanism in early embryos.
Abstract: H3K9me3-dependent heterochromatin is a major barrier of cell fate changes that must be reprogrammed after fertilization. However, the molecular details of these events are lacking in early embryos. Here, we map the genome-wide distribution of H3K9me3 modifications in mouse early embryos. We find that H3K9me3 exhibits distinct dynamic features in promoters and long terminal repeats (LTRs). Both parental genomes undergo large-scale H3K9me3 reestablishment after fertilization, and the imbalance in parental H3K9me3 signals lasts until blastocyst. The rebuilding of H3K9me3 on LTRs is involved in silencing their active transcription triggered by DNA demethylation. We identify that Chaf1a is essential for the establishment of H3K9me3 on LTRs and subsequent transcriptional repression. Finally, we find that lineage-specific H3K9me3 is established in post-implantation embryos. In summary, our data demonstrate that H3K9me3-dependent heterochromatin undergoes dramatic reprogramming during early embryonic development and provide valuable resources for further exploration of the epigenetic mechanism in early embryos.

Journal ArticleDOI
TL;DR: In this paper, the authors comprehensively mapped complex assemblies on chromatin and found that ncBAF complexes uniquely localize to CTCF sites and promoters, and identified ncCAF subunits as synthetic lethal targets specific to synovial sarcoma and malignant rhabdoid tumours, which both exhibit SMARCB1 subunit perturbation.
Abstract: Mammalian SWI/SNF chromatin remodelling complexes exist in three distinct, final-form assemblies: canonical BAF (cBAF), PBAF and a newly characterized non-canonical complex (ncBAF). However, their complex-specific targeting on chromatin, functions and roles in disease remain largely undefined. Here, we comprehensively mapped complex assemblies on chromatin and found that ncBAF complexes uniquely localize to CTCF sites and promoters. We identified ncBAF subunits as synthetic lethal targets specific to synovial sarcoma and malignant rhabdoid tumours, which both exhibit cBAF complex (SMARCB1 subunit) perturbation. Chemical and biological depletion of the ncBAF subunit, BRD9, rapidly attenuates synovial sarcoma and malignant rhabdoid tumour cell proliferation. Importantly, in cBAF-perturbed cancers, ncBAF complexes maintain gene expression at retained CTCF-promoter sites and function in a manner distinct from fusion oncoprotein-bound complexes. Together, these findings unmask the unique targeting and functional roles of ncBAF complexes and present new cancer-specific therapeutic targets.

Journal ArticleDOI
TL;DR: The signature of the naive haematopoietic stem cell is defined and a continuum of core progenitor states is found, defining a reference network model for blood progenitors and their differentiation trajectories during normal and perturbed haem atopoiesis.
Abstract: The dynamics of haematopoietic stem cell differentiation and the hierarchy of oligopotent stem cells in the bone marrow remain controversial. Here we dissect haematopoietic progenitor populations at single cell resolution, deriving an unbiased reference model of transcriptional states in normal and perturbed murine bone marrow. We define the signature of the naive haematopoietic stem cell and find a continuum of core progenitor states. Core cell populations mix transcription of pre-myeloid and pre-lymphoid programs, but do not mix erythroid or megakaryocyte programs with other fates. CRISP-seq perturbation analysis confirms our models and reveals that Cebpa regulates entry into all myeloid fates, while Irf8 and PU.1 deficiency block later differentiation towards monocyte or granulocyte fates. Our transcriptional map defines a reference network model for blood progenitors and their differentiation trajectories during normal and perturbed haematopoiesis. Using a multi-tier scRNA-seq and CRISP-seq approach, Giladi et al. define a transcriptional signature for the naive haematopoietic stem cell state, and follow progenitor plasticity and fate commitment under the influence of cytokines and growth factors.

Journal ArticleDOI
TL;DR: How the autophagy pathway restricts cellular damage and degeneration, and the impact of these functions towards tissue health and organismal lifespan is examined.
Abstract: Macroautophagy (autophagy) is a conserved lysosomal degradation process essential for cellular homeostasis and adaption to stress. Accumulating evidence indicates that autophagy declines with age and that impaired autophagy predisposes individuals to age-related diseases, whereas interventions that stimulate autophagy often promote longevity. In this Review, we examine how the autophagy pathway restricts cellular damage and degeneration, and the impact of these functions towards tissue health and organismal lifespan.

Journal ArticleDOI
TL;DR: It is shown that endogenous aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours, and that metformin depletes as partate to limit tumour growth.
Abstract: Defining the metabolic limitations of tumour growth will help to develop cancer therapies1. Cancer cells proliferate slower in tumours than in standard culture conditions, indicating that a metabolic limitation may restrict cell proliferation in vivo. Aspartate synthesis can limit cancer cell proliferation when respiration is impaired2–4; however, whether acquiring aspartate is endogenously limiting for tumour growth is unknown. We confirm that aspartate has poor cell permeability, which prevents environmental acquisition, whereas the related amino acid asparagine is available to cells in tumours, but cancer cells lack asparaginase activity to convert asparagine to aspartate. Heterologous expression of guinea pig asparaginase 1 (gpASNase1), an enzyme that produces aspartate from asparagine5, confers the ability to use asparagine to supply intracellular aspartate to cancer cells in vivo. Tumours expressing gpASNase1 grow at a faster rate, indicating that aspartate acquisition is an endogenous metabolic limitation for the growth of some tumours. Tumours expressing gpASNase1 are also refractory to the growth suppressive effects of metformin, suggesting that metformin inhibits tumour growth by depleting aspartate. These findings suggest that therapeutic aspartate suppression could be effective to treat cancer.

Journal ArticleDOI
TL;DR: The cellular and molecular mechanisms whereby autophagy functions in multiple aspects of malignant disease, including cancer initiation, progression and responses to therapy are discussed.
Abstract: Mammalian cells harness autophagy to eliminate physiological byproducts of metabolism and cope with microenvironmental perturbations. Moreover, autophagy connects cellular adaptation with extracellular circuitries that impinge on immunity and metabolism. As it links transformed and non-transformed components of the tumour microenvironment, such an autophagic network is important for cancer initiation, progression and response to therapy. Here, we discuss the mechanisms whereby the autophagic network interfaces with multiple aspects of malignant disease.

Journal ArticleDOI
TL;DR: It is demonstrated that the p53-responsive lncRNA GUARDIN is important for maintaining genomic integrity under steady-state conditions and after exposure to exogenous genotoxic stress and may constitute a target for cancer treatment.
Abstract: The list of long non-coding RNAs (lncRNAs) involved in the p53 pathway of the DNA damage response is rapidly expanding, but whether lncRNAs have a role in maintaining the de novo structure of DNA is unknown. Here, we demonstrate that the p53-responsive lncRNA GUARDIN is important for maintaining genomic integrity under steady-state conditions and after exposure to exogenous genotoxic stress. GUARDIN is necessary for preventing chromosome end-to-end fusion through maintaining the expression of telomeric repeat-binding factor 2 (TRF2) by sequestering microRNA-23a. Moreover, GUARDIN also sustains breast cancer 1 (BRCA1) stability by acting as an RNA scaffold to facilitate the heterodimerization of BRCA1 and BRCA1-associated RING domain protein 1 (BARD1). As such, GUARDIN silencing triggered apoptosis and senescence, enhanced cytotoxicity of additional genotoxic stress and inhibited cancer xenograft growth. Thus, GUARDIN may constitute a target for cancer treatment. Hu et al. report that the long non-coding RNA GUARDIN is transcriptionally induced by p53 and promotes genome stability through a dual mechanism to maintain TRF2 expression and BRCA1 stability.

Journal ArticleDOI
TL;DR: An approach to combine embryonic stem cells, trophoblast stem cells and extra-embryonic endoderm stem cells into self-assembling embryo-like structures, which recapitulate key hallmarks of gastrulation in vitro, is devised.
Abstract: Embryonic stem cells can be incorporated into the developing embryo and its germ line, but, when cultured alone, their ability to generate embryonic structures is restricted. They can interact with trophoblast stem cells to generate structures that break symmetry and specify mesoderm, but their development is limited as the epithelial-mesenchymal transition of gastrulation cannot occur. Here, we describe a system that allows assembly of mouse embryonic, trophoblast and extra-embryonic endoderm stem cells into structures that acquire the embryo's architecture with all distinct embryonic and extra-embryonic compartments. Strikingly, such embryo-like structures develop to undertake the epithelial-mesenchymal transition, leading to mesoderm and then definitive endoderm specification. Spatial transcriptomic analyses demonstrate that these morphological transformations are underpinned by gene expression patterns characteristic of gastrulating embryos. This demonstrates the remarkable ability of three stem cell types to self-assemble in vitro into gastrulating embryo-like structures undertaking spatio-temporal events of the gastrulating mammalian embryo.

Journal ArticleDOI
TL;DR: During embryonic development, epidermal basal layer crowding generates local changes in cell shape, cortical tension, and adhesion that initiate differentiation and delamination that generate multilayered tissue.
Abstract: To establish and maintain organ structure and function, tissues need to balance stem cell proliferation and differentiation rates and coordinate cell fate with position. By quantifying and modelling tissue stress and deformation in the mammalian epidermis, we find that this balance is coordinated through local mechanical forces generated by cell division and delamination. Proliferation within the basal stem/progenitor layer, which displays features of a jammed, solid-like state, leads to crowding, thereby locally distorting cell shape and stress distribution. The resulting decrease in cortical tension and increased cell–cell adhesion trigger differentiation and subsequent delamination, reinstating basal cell layer density. After delamination, cells establish a high-tension state as they increase myosin II activity and convert to E-cadherin-dominated adhesion, thereby reinforcing the boundary between basal and suprabasal layers. Our results uncover how biomechanical signalling integrates single-cell behaviours to couple proliferation, cell fate and positioning to generate a multilayered tissue. Mechanics of epidermal differentiation Miroshnikova et al. find that during embryonic development, epidermal basal layer crowding generates local changes in cell shape, cortical tension, and adhesion that initiate differentiation and delamination

Journal ArticleDOI
TL;DR: It is shown that extracellular vesicles containing NOX2 complexes are released from macrophages and incorporated into injured axons, leading to axonal regeneration through PI3K–p-Akt signalling, challenging the view that ROS are exclusively involved in nerve degeneration.
Abstract: Reactive oxygen species (ROS) contribute to tissue damage and remodelling mediated by the inflammatory response after injury. Here we show that ROS, which promote axonal dieback and degeneration after injury, are also required for axonal regeneration and functional recovery after spinal injury. We find that ROS production in the injured sciatic nerve and dorsal root ganglia requires CX3CR1-dependent recruitment of inflammatory cells. Next, exosomes containing functional NADPH oxidase 2 complexes are released from macrophages and incorporated into injured axons via endocytosis. Once in axonal endosomes, active NOX2 is retrogradely transported to the cell body through an importin-β1-dynein-dependent mechanism. Endosomal NOX2 oxidizes PTEN, which leads to its inactivation, thus stimulating PI3K-phosporylated (p-)Akt signalling and regenerative outgrowth. Challenging the view that ROS are exclusively involved in nerve degeneration, we propose a previously unrecognized role of ROS in mammalian axonal regeneration through a NOX2-PI3K-p-Akt signalling pathway.

Journal ArticleDOI
TL;DR: In this Review, Mohammadi and Sahai discuss recent insights into how altered tumour mechanics arise and how this affects tumorigenesis.
Abstract: The physical characteristics of tumours are intricately linked to the tumour phenotype and difficulties during treatment. Many factors contribute to the increased stiffness of tumours; from increased matrix deposition, matrix remodelling by forces from cancer cells and stromal fibroblasts, matrix crosslinking, increased cellularity, and the build-up of both solid and interstitial pressure. Increased stiffness then feeds back to increase tumour invasiveness and reduce therapy efficacy. Increased understanding of this interplay is offering new therapeutic avenues.