scispace - formally typeset
Search or ask a question

Showing papers in "Physiological Measurement in 2013"


Journal ArticleDOI
TL;DR: The Xsens system most accurately determined the flexion/extension joint angle (CMC > 0.96) for all joints under all three walking conditions, and the joint angle measurements associated with the other two joint axes had lower correlation including complex CMC values.
Abstract: This study aims to validate a commercially available inertial sensor based motion capture system, Xsens MVN BIOMECH using its native protocols, against a camera-based motion capture system for the measurement of joint angular kinematics. Performance was evaluated by comparing waveform similarity using range of motion, mean error and a new formulation of the coefficient of multiple correlation (CMC). Three dimensional joint angles of the lower limbs were determined for ten healthy subjects while they performed three daily activities: level walking, stair ascent, and stair descent. Under all three walking conditions, the Xsens system most accurately determined the flexion/extension joint angle (CMC > 0.96) for all joints. The joint angle measurements associated with the other two joint axes had lower correlation including complex CMC values. The poor correlation in the other two joint axes is most likely due to differences in the anatomical frame definition of limb segments used by the Xsens and Optotrak systems. Implementation of a protocol to align these two systems is necessary when comparing joint angle waveforms measured by the Xsens and other motion capture systems.

246 citations


Journal ArticleDOI
TL;DR: This work compares dry electrodes for biomedical use and physiological research, and reviews some novel systems developed for cardiac monitoring, and provides suggestions to develop a dry-electrode-based system for mobile and long-term cardiac monitoring applications.
Abstract: Patient biopotentials are usually measured with conventional disposable Ag/AgCl electrodes. These electrodes provide excellent signal quality but are irritating for long-term use. Skin preparation is usually required prior to the application of electrodes such as shaving and cleansing with alcohol. To overcome these difficulties, researchers and caregivers seek alternative electrodes that would be acceptable in clinical and research environments. Dry electrodes that operate without gel, adhesive or even skin preparation have been studied for many decades. They are used in research applications, but they have yet to achieve acceptance for medical use. So far, a complete comparison and evaluation of dry electrodes is not well described in the literature. This work compares dry electrodes for biomedical use and physiological research, and reviews some novel systems developed for cardiac monitoring. Lastly, the paper provides suggestions to develop a dry-electrode-based system for mobile and long-term cardiac monitoring applications.

214 citations


Journal ArticleDOI
TL;DR: This paper reviews the existing smartphone applications landscape used in the field of sleep disorders and proposes possible advances to improve screening approaches.
Abstract: Sleep disorders are a common problem and contribute to a wide range of healthcare issues. The societal and financial costs of sleep disorders are enormous. Sleep-related disorders are often diagnosed with an overnight sleep test called a polysomnogram, or sleep study involving the measurement of brain activity through the electroencephalogram. Other parameters monitored include oxygen saturation, respiratory effort, cardiac activity (through the electrocardiogram), as well as video recording, sound and movement activity. Monitoring can be costly and removes the patients from their normal sleeping environment, preventing repeated unbiased studies. The recent increase in adoption of smartphones, with high quality on-board sensors has led to the proliferation of many sleep screening applications running on the phone. However, with the exception of simple questionnaires, no existing sleep-related application available for smartphones is based on scientific evidence. This paper reviews the existing smartphone applications landscape used in the field of sleep disorders and proposes possible advances to improve screening approaches.

121 citations


Journal ArticleDOI
TL;DR: A model to estimate the time course of core temperature using a series of HR measurements as a leading indicator using a Kalman filter is developed and suggests it is accurate enough to provide practical indication of thermal work strain for use in the work place.
Abstract: Core temperature (CT) in combination with heart rate (HR) can be a good indicator of impending heat exhaustion for occupations involving exposure to heat, heavy workloads, and wearing protective clothing. However, continuously measuring CT in an ambulatory environment is difficult. To address this problem we developed a model to estimate the time course of CT using a series of HR measurements as a leading indicator using a Kalman filter. The model was trained using data from 17 volunteers engaged in a 24 h military field exercise (air temperatures 24–36 °C, and 42%–97% relative humidity and CTs ranging from 36.0–40.0 °C). Validation data from laboratory and field studies (N = 83) encompassing various combinations of temperature, hydration, clothing, and acclimation state were examined using the Bland–Altman limits of agreement (LoA) method. We found our model had an overall bias of −0.03 ± 0.32 °C and that 95% of all CT estimates fall within ±0.63 °C (>52 000 total observations). While the model for estimating CT is not a replacement for direct measurement of CT (literature comparisons of esophageal and rectal methods average LoAs of ±0.58 °C) our results suggest it is accurate enough to provide practical indication of thermal work strain for use in the work place.

120 citations


Journal ArticleDOI
TL;DR: A new flexible algorithm for the robust estimation of local (beat-to-beat) intervals from cardiac vibration signals, specifically ballistocardiograms (BCGs) recorded by an unobtrusive bed-mounted sensor, using a Bayesian approach.
Abstract: Reliable and accurate estimation of instantaneous frequencies of physiological rhythms, such as heart rate, is critical for many healthcare applications. Robust estimation is especially challenging when novel unobtrusive sensors are used for continuous health monitoring in uncontrolled environments, because these sensors can create significant amounts of potentially unreliable data. We propose a new flexible algorithm for the robust estimation of local (beat-to-beat) intervals from cardiac vibration signals, specifically ballistocardiograms (BCGs), recorded by an unobtrusive bed-mounted sensor. This sensor allows the measurement of motions of the body which are caused by cardiac activity. Our method requires neither a training phase nor any prior knowledge about the morphology of the heart beats in the analyzed waveforms. Instead, three short-time estimators are combined using a Bayesian approach to continuously estimate the inter-beat intervals. We have validated our method on over-night BCG recordings from 33 subjects (8 normal, 25 insomniacs). On this dataset, containing approximately one million heart beats, our method achieved a mean beat-to-beat interval error of 0.78% with a coverage of 72.69%.

117 citations


Journal ArticleDOI
TL;DR: Findings indicate that decreases in R reflect localized fluid accumulation, and reductions in Xc and PA highlight disruption of cellular membrane integrity and injury.
Abstract: Injuries to lower limb muscles are common among football players. Localized bioimpedance analysis (BIA) utilizes electrical measurements to assess soft tissue hydration and cell membrane integrity non-invasively. This study reports the effects of the severity of muscle injury and recovery on BIA variables. We made serial tetra-polar, phase-sensitive 50 kHz localized BIA measurements of quadriceps, hamstring and calf muscles of three male football players before and after injury and during recovery until return-to-play, to determine changes in BIA variables (resistance (R), reactance (Xc) and phase angle (PA)) in different degrees of muscle injury. Compared to non-injury values, R, Xc and PA decreased with increasing muscle injury severity: grade III (23.1%, 45.1% and 27.6%), grade II (20.6%, 31.6% and 13.3%) and grade I (11.9%, 23.5% and 12.1%). These findings indicate that decreases in R reflect localized fluid accumulation, and reductions in Xc and PA highlight disruption of cellular membrane integrity and injury. Localized BIA measurements of muscle groups enable the practical detection of soft tissue injury and its severity.

115 citations


Journal ArticleDOI
TL;DR: A comprehensive review of the developments of control systems and techniques that have been applied to control implantable rotary blood pumps to avoid such undesired pumping states as left ventricular collapse caused by suction is provided.
Abstract: From the moment of creation to the moment of death, the heart works tirelessly to circulate blood, being a critical organ to sustain life. As a non-stopping pumping machine, it operates continuously to pump blood through our bodies to supply all cells with oxygen and necessary nutrients. When the heart fails, the supplement of blood to the body's organs to meet metabolic demands will deteriorate. The treatment of the participating causes is the ideal approach to treat heart failure (HF). As this often cannot be done effectively, the medical management of HF is a difficult challenge. Implantable rotary blood pumps (IRBPs) have the potential to become a viable long-term treatment option for bridging to heart transplantation or destination therapy. This increases the potential for the patients to leave the hospital and resume normal lives. Control of IRBPs is one of the most important design goals in providing long-term alternative treatment for HF patients. Over the years, many control algorithms including invasive and non-invasive techniques have been developed in the hope of physiologically and adaptively controlling left ventricular assist devices and thus avoiding such undesired pumping states as left ventricular collapse caused by suction. In this paper, we aim to provide a comprehensive review of the developments of control systems and techniques that have been applied to control IRBPs.

106 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the capability of shear wave elastography (SWE) to measure variations in gastrocnemius shear-wave speed induced via active contraction and passive stretch.
Abstract: Muscle stiffness is known to vary as a result of a variety of disease states, yet current clinical methods for quantifying muscle stiffness have limitations including cost and availability. We investigated the capability of shear wave elastography (SWE) to measure variations in gastrocnemius shear wave speed induced via active contraction and passive stretch. Ten healthy young adults were tested. Shear wave speeds were measured using a SWE transducer positioned over the medial gastrocnemius at ankle angles ranging from maximum dorsiflexion to maximum plantarflexion. Shear wave speeds were also measured during voluntary plantarflexor contractions at a fixed ankle angle. Average shear wave speed increased significantly from 2.6 to 5.6 m s–1 with passive dorsiflexion and the knee in an extended posture, but did not vary with dorsiflexion when the gastrocnemius was shortened in a flexed knee posture. During active contractions, shear wave speed monotonically varied with the net ankle moment generated, reaching 8.3 m s–1 in the maximally contracted condition. There was a linear correlation between shear wave speed and net ankle moment in both the active and passive conditions; however, the slope of this linear relationship was significantly steeper for the data collected during passive loading conditions. The results show that SWE is a promising approach for quantitatively assessing changes in mechanical muscle loading. However, the differential effect of active and passive loading on shear wave speed makes it important to carefully consider the relevant loading conditions in which to use SWE to characterize in vivo muscle properties.

73 citations


Journal ArticleDOI
TL;DR: This paper presents a novel measurement and identification approach, the so-called parametric-in-time approach, valid for time-varying (bio-)impedance systems with a (quasi) periodic character, based on multisine EIS.
Abstract: The bioimpedance measurement/identification of time-varying biological systems Z(ω,t ) by means of electrical impedance spectroscopy (EIS) is still a challenge today. This paper presents a novel measurement and identification approach, the so-called parametric-in-time approach, valid for time-varying (bio-)impedance systems with a (quasi) periodic character. The technique is based on multisine EIS. Contrary to the widely used nonparametric-in-time strategy, the (bio-)impedance Z(ω,t ) is assumed to be time-variant during the measurement interval. Therefore, time-varying spectral analysis tools are required. This new parametric-in-time measuring/identification technique has experimentally been validated through three independent sets of in situ measurements of in vivo myocardial impedance. We show that the timevarying myocardial impedance Z(ω,t ) is dominantly periodically time varying (PTV), denoted as ZPTV(ω,t ). From the temporal analysis of ZPTV(ω,t ) ,w e demonstrate that it is possible to decompose ZPTV(ω,t ) into a(n) (in)finite sum of fundamental (bio-)impedance spectra, the so-called harmonic impedance spectra (HIS) Zk(ω)s with k ∈ Z. This is similar to the well-known Fourier series of a periodic signal, but now understood at the level of a periodic system’s frequency response. The HIS Zk(ω) sf ork ∈ Z\{0} actually summarize in the bi-frequency (ω,k) domain all the temporal in-cycle information about the periodic changes of Z(ω,t ). For the particular case k = 0( i.e. on theω-axis), Z0(ω) reflects the mean in-cycle behavior of the time-varying bioimpedance. Finally, the HIS Zk(ω)s are directly identified from noisy current and voltage

72 citations


Journal ArticleDOI
TL;DR: Independent component analysis (ICA), principal component analysis, auto- and cross-correlation are investigated and compared with respect to their effectiveness in extracting the relevant information from video recordings and it is found that ICA produces the most consistent results.
Abstract: Imaging photoplethysmography is an emerging technique for the extraction of biometric information from people using video recordings. The focus is on extracting the cardiac heart rate of the subject by analysing the luminance of the colour video signal and identifying periodic components. Advanced signal processing is needed to recover the information required. In this paper, independent component analysis (ICA), principal component analysis, auto- and cross-correlation are investigated and compared with respect to their effectiveness in extracting the relevant information from video recordings. Results obtained are compared with those recorded by a modern commercial finger pulse oximeter. It is found that ICA produces the most consistent results.

72 citations


Journal ArticleDOI
TL;DR: The use of the AD5933 measurement chip is extended to allow it to operate in a four electrode configuration in order to limit the effects of the parasitic impedances between the medium under test and the electrodes.
Abstract: This paper presents the design of a four electrode impedance measurement circuit dedicated to bioimpedance embedded applications. It extends the use of the AD5933 measurement chip to allow it to operate in a four electrode configuration in order to limit the effects of the parasitic impedances between the medium under test and the electrodes. The circuit has shown a good measurement accuracy on various test circuits. In association with a four microband electrode system it has been successfully used to characterize small physiological samples (50 μl) with conductivities ranging from 0.14 to 1.2 S m−1. It can be used as an alternative bioimpedance measurement approach for embedded applications operating in the four electrode configuration.

Journal ArticleDOI
TL;DR: KNNCE was more powerful than CCE in detecting the decrease of complexity of heart period variability imposed by double autonomic blockade and provides indexes indistinguishable from those derived from CApEn and SampEn.
Abstract: Complexity analysis of short-term cardiovascular control is traditionally performed using entropy-based approaches including corrective terms or strategies to cope with the loss of reliability of conditional distributions with pattern length. This study proposes a new approach aiming at the estimation of conditional entropy (CE) from short data segments (about 250 samples) based on the k-nearest-neighbor technique. The main advantages are: (i) the control of the loss of reliability of the conditional distributions with the pattern length without introducing a priori information; (ii) the assessment of complexity indexes without fixing the pattern length to an arbitrary low value. The approach, referred to as k-nearest-neighbor conditional entropy (KNNCE), was contrasted with corrected approximate entropy (CApEn), sample entropy (SampEn) and corrected CE (CCE), being the most frequently exploited approaches for entropy-based complexity analysis of short cardiovascular series. Complexity indexes were evaluated during the selective pharmacological blockade of the vagal and/or sympathetic branches of the autonomic nervous system. We found that KNNCE was more powerful than CCE in detecting the decrease of complexity of heart period variability imposed by double autonomic blockade. In addition, KNNCE provides indexes indistinguishable from those derived from CApEn and SampEn. Since this result was obtained without using strategies to correct the CE estimate and without fixing the embedding dimension to an arbitrary low value, KNNCE is potentially more valuable than CCE, CApEn and SampEn when the number of past samples most useful to reduce the uncertainty of future behaviors is high and/or variable among conditions and/or groups.

Journal ArticleDOI
TL;DR: It is found that regional obstruction measured by EIT is reliable and may be used as an additional clinical examination tool for CF patients.
Abstract: Electrical impedance tomography (EIT) is able to deliver regional information to assess the airway obstruction in patients with cystic fibrosis (CF). In the present study, regional obstruction in CF patients measured by EIT was compared with high resolution computed tomography (HRCT). Five CF patients were routinely scheduled for HRCT examination. EIT measurements were performed on these patients ?2 months during a standard pulmonary function test. The weighted Brody score derived from HRCT, which considers bronchiectasis, mucus plugging, peribronchial thickening, parenchymal opacity and hyperinflation, was calculated from the CT scans acquired at the location of EIT electrodes ?5?cm. Ratios of maximum expiratory flows at 25% and 75% of vital capacity (MEF25/MEF75) with respect to relative impedance change were calculated for regional areas in EIT images. Regional airway obstruction identified in the MEF25/MEF75?maps was similar to that found in CT. Median values of MEF25/MEF75?and weighted Brody score were highly correlated (r2?= 0.83, P < 0.05). We found that regional obstruction measured by EIT is reliable and may be used as an additional clinical examination tool for CF patients.

Journal ArticleDOI
TL;DR: This work proposes a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA), and proposes a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving.
Abstract: This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems.

Journal ArticleDOI
TL;DR: The results showed that diabetics had a significantly greater effective Young's modulus and initial modulus of quasi-linear viscoelasticity compared to non-diabetics and the plantar pressure gradient and biomechanical properties were significantly correlated.
Abstract: Diabetic foot ulcers are one of the most serious complications associated with diabetes mellitus. Current research studies have demonstrated that biomechanical alterations of the diabetic foot contribute to the development of foot ulcers. However, the changes of soft tissue biomechanical properties associated with diabetes and its influences on the development of diabetic foot ulcers have not been investigated. The purpose of this study was to investigate the effect of diabetes on the biomechanical properties of plantar soft tissues and the relationship between biomechanical properties and plantar pressure distributions. We used the ultrasound indentation tests to measure force-deformation relationships of plantar soft tissues and calculate the effective Young's modulus and quasi-linear viscoelastic parameters to quantify biomechanical properties of plantar soft tissues. We also measured plantar pressures to calculate peak plantar pressure and plantar pressure gradient. Our results showed that diabetics had a significantly greater effective Young's modulus and initial modulus of quasi-linear viscoelasticity compared to non-diabetics. The plantar pressure gradient and biomechanical properties were significantly correlated. Our findings indicate that diabetes is linked to an increase in viscoelasticity of plantar soft tissues that may contribute to a higher peak plantar pressure and plantar pressure gradient in the diabetic foot.

Journal ArticleDOI
TL;DR: It is suggested that age- and gender-associated differences in muscle condition are detectable using EIM, and the relationship of these easily obtained parameters to standard functional, imaging, and pathological markers of sarcopenia deserves further study.
Abstract: Electrical impedance measurements of skeletal muscle may be sensitive to age-associated declines in muscle health. In an effort to evaluate this concept further, we performed electrical impedance myography (EIM) using a handheld array on 38 individuals aged 19-50 years and 41 individuals aged 60-85 years. Individuals either had seven upper extremity or seven lower extremity muscles measured. The 50 kHz reactance, resistance and phase were used as the major outcome variables. Although the phase values were similar in both groups, both reactance and resistance values were lower in the lower extremities of the older individuals as compared to the younger (-23 ± 6%, p = 0.001 for reactance and -27 ± 7%, p = 0.005 for resistance), whereas changes in upper extremity values were not significantly different (-9 ± 5%, p = 0.096 for reactance and +5 ± 9%, p = 0.55 for resistance). When analyzing the genders separately, it became clear that this reduction in lower extremity values was most pronounced in men and less consistently present in women. These findings suggest that age- and gender-associated differences in muscle condition are detectable using EIM. The relationship of these easily obtained parameters to standard functional, imaging, and pathological markers of sarcopenia deserves further study.

Journal ArticleDOI
TL;DR: HRJSD provides strong evidence that autonomic regulation in MED seems to be, to some extent, predominated by invariable HR responses in combination with alternating SP values in contrast to UNMED, indicating an impairment of the baroreflex control feedback loop in MED.
Abstract: Besides the well-known cardiac risk factors for schizophrenia, increasing concerns have been raised regarding the cardiac side-effects of antipsychotic medications. A bivariate analysis of autonomic regulation, based on cardiovascular coupling, can provide additional information about heart rate (HR) and blood pressure regulatory patterns within the complex interactions of the cardiovascular system. We introduce a new high-resolution coupling analysis method (HRJSD) based on joint symbolic dynamics (JSD), which is characterized by three symbols, a threshold (individual dynamic variability, physiological) for time series transformation and eight coupling pattern families. This is based on a redundancy reduction strategy used to quantify and characterize cardiovascular couplings. In this study, short-term (30 min) HR and systolic blood pressure (SP) time series of 42 unmedicated (UNMED) and 42 medicated patients (MED) suffering from acute schizophrenia were analysed to establish the suitability of the new method for quantifying the effects of antipsychotics on cardiovascular couplings. We were able to demonstrate that HRJSD, applying the threshold based on spontaneous baroreflex sensitivity (BRS) estimation, revealed eight significant pattern families that were able to quantify the anti-cholinergic effects of antipsychotics and the related changes of cardiovascular regulation (coupling) in MED in comparison to UNMED. This was in contrast to the simple JSD, BRS (sequence method) and only partly to standard linear HR variability indices. HRJSD provides strong evidence that autonomic regulation in MED seems to be, to some extent, predominated by invariable HR responses in combination with alternating SP values in contrast to UNMED, indicating an impairment of the baroreflex control feedback loop in MED. Surrogate data analysis was applied to test for the significance and nonlinearity of cardiovascular couplings in the original data due to medical treatment with antipsychotic drugs in MED. In conclusion, the application of HRJSD revealed detailed information about short-term nonlinear cardiovascular couplings and cardiovascular physiological regulatory mechanisms (patterns) of autonomic function due to the anti-cholinergic effects of antipsychotics in patients with acute schizophrenia.

Journal ArticleDOI
TL;DR: This study proposes a novel method of estimating PIFR and also the inspiratory capacity (IC) of patients' inhalations from a commonly used DPI, using acoustic measurements and demonstrates the feasibility of using acoustics to objectively monitor inhaler use.
Abstract: Inhalers are devices employed to deliver medication to the airways in the treatment of respiratory diseases such as asthma and chronic obstructive pulmonary disease. A dry powder inhaler (DPI) is a breath actuated inhaler that delivers medication in dry powder form. When used correctly, DPIs improve patients' clinical outcomes. However, some patients are unable to reach the peak inspiratory flow rate (PIFR) necessary to fully extract the medication. Presently clinicians have no reliable method of objectively measuring PIFR in inhalers. In this study, we propose a novel method of estimating PIFR and also the inspiratory capacity (IC) of patients' inhalations from a commonly used DPI, using acoustic measurements. With a recording device, the acoustic signal of 15 healthy subjects using a DPI over a range of varying PIFR and IC values was obtained. Temporal and spectral signal analysis revealed that the inhalation signal contains sufficient information that can be employed to estimate PIFR and IC. It was found that the average power (Pave) in the frequency band 300–600 Hz had the strongest correlation with PIFR (R2 = 0.9079), while the power in the same frequency band was also highly correlated with IC (R2 = 0.9245). This study has several clinical implications as it demonstrates the feasibility of using acoustics to objectively monitor inhaler use.

Journal ArticleDOI
TL;DR: Reflection and transmission photoplethysmography are comparable methods to derive NPV in accordance with the theoretical prediction and NPV derived from the bottom of the ear-canal is a valid approach, which could be useful for evaluating daily life stress.
Abstract: Normalized pulse volume (NPV) derived from the ear has the potential to be a practical index for monitoring daily life stress. However, ear NPV has not yet been validated. Therefore, we compared NPV derived from an index finger using transmission photoplethysmography as a reference, with NPV derived from a middle finger and four sites of the ear using reflection photoplethysmography during baseline and while performing cold and warm water immersion in ten young and six middle-aged subjects. The results showed that logarithmically-transformed NPV (lnNPV) during cold water immersion as compared with baseline values was significantly lower, only at the index finger, the middle finger and the bottom of the ear-canal. Furthermore, lnNPV reactivities (ΔlnNPV; the difference between baseline and test values) from an index finger were significantly related to ΔlnNPV from the middle finger and the bottom of the ear-canal (young: r = 0.90 and 0.62, middle-aged: r = 0.80 and 0.58, respectively). In conclusion, these findings show that reflection and transmission photoplethysmography are comparable methods to derive NPV in accordance with our theoretical prediction. NPV derived from the bottom of the ear-canal is a valid approach, which could be useful for evaluating daily life stress.

Journal ArticleDOI
TL;DR: The goal of this paper is to investigate the possibility of developing a snore based multi-feature class OSA screening tool by integrating snore features that capture functional, structural, and spatio-temporal dependences of SS.
Abstract: Obstructive sleep apnea (OSA) is a serious sleep disorder with high community prevalence. More than 80% of OSA suffers remain undiagnosed. Polysomnography (PSG) is the current reference standard used for OSA diagnosis. It is expensive, inconvenient and demands the extensive involvement of a sleep technologist. At present, a low cost, unattended, convenient OSA screening technique is an urgent requirement. Snoring is always almost associated with OSA and is one of the earliest nocturnal symptoms. With the onset of sleep, the upper airway undergoes both functional and structural changes, leading to spatially and temporally distributed sites conducive to snore sound (SS) generation. The goal of this paper is to investigate the possibility of developing a snore based multi-feature class OSA screening tool by integrating snore features that capture functional, structural, and spatio-temporal dependences of SS. In this paper, we focused our attention to the features in voiced parts of a snore, where quasi-repetitive packets of energy are visible. Individual snore feature classes were then optimized using logistic regression for optimum OSA diagnostic performance. Consequently, all feature classes were integrated and optimized to obtain optimum OSA classification sensitivity and specificity. We also augmented snore features with neck circumference, which is a one-time measurement readily available at no extra cost. The performance of the proposed method was evaluated using snore recordings from 86 subjects (51 males and 35 females). Data from each subject consisted of 6-8 h long sound recordings, made concurrently with routine PSG in a clinical sleep laboratory. Clinical diagnosis supported by standard PSG was used as the reference diagnosis to compare our results against. Our proposed techniques resulted in a sensitivity of 93±9% with specificity 93±9% for females and sensitivity of 92±6% with specificity 93±7% for males at an AHI decision threshold of 15 events/h. These results indicate that our method holds the potential as a tool for population screening of OSA in an unattended environment.

Journal ArticleDOI
TL;DR: Viscoelastic parameter mapping of contracted muscle allows new insight into the relationship between physiology, neuromuscular activation, and human performance.
Abstract: Skeletal muscle viscoelastic properties reflect muscle microstructure and neuromuscular activation. Elastographic methods, including magnetic resonance elastography, have been used to characterize muscle viscoelastic properties in terms of region of interest (ROI) measurements. The present study extended this approach to create thresholded pixel-by-pixel maps of viscoelastic properties of skeletal muscle during rest and knee extension in eleven subjects. ROI measurements were taken for individual quadricep muscles and the quadriceps region as a whole, and the viscoelastic parameter map pixels were statistically tested at positive false discovery rate q ⩽ 0.25. ROI measurements showed significant (p ⩽ 0.05) increase in storage modulus (G′) and loss modulus (G″), with G″ increasing more than G′, in agreement with previous findings. The q-value maps further identified the vastus intermedius as the primary driver of this change, with greater G″/G′ increase than surrounding regions. Additionally, a cluster of significant decrease in G″/G′ was found in the region of vastus lateralis below the fulcrum point of the lift. Viscoelastic parameter mapping of contracted muscle allows new insight into the relationship between physiology, neuromuscular activation, and human performance.

Journal ArticleDOI
TL;DR: This study shows that EIT is able to reliably discern even small ventilation changes on sub-lobar level through a comparison with xenon-multidetector-row computed tomography (XeCT) in an animal model of sub- lobar lung injury.
Abstract: Validation studies of electrical impedance tomography (EIT) based assessment of regional ventilation under pathological conditions are required to prove that EIT can reliably quantify heterogeneous ventilation distribution with sufficient accuracy. The objective of our study was to validate EIT measurements of regional ventilation through a comparison with xenon-multidetector-row computed tomography (XeCT) in an animal model of sub-lobar lung injury. Nine anesthetized mechanically ventilated supine pigs were examined before and after the induction of lung injury in two adjacent sub-lobar segments of the right lung by saline lavage or endotoxin instillation. Regional ventilation was determined in 32 anteroposterior regions of interest in the right and left lungs and the ventilation change quantified by difference images between injury and control. Six animals were included in the final analysis. Measurements of regional ventilation by EIT and XeCT correlated well before (rs = 0.89 right, rs = 0.90 left lung) and after local injury (rs = 0.79 and 0.92, respectively). No bias and narrow limits of agreement were found during both conditions. The ventilation decrease in the right injured lung was correspondingly measured by both modalities (5.5%±1.1% by EIT and 5.4%±1.9% by XeCT, p = 0.94). EIT was inferior to clearly separate the exact anatomical location of the regional injuries. Regional ventilation was overestimated (<2%) in the most ventral and dorsal regions and underestimated (2%) in the middle regions by EIT compared to XeCT. This study shows that EIT is able to reliably discern even small ventilation changes on sub-lobar level.

Journal ArticleDOI
TL;DR: In all the cases, PRV indices obtained through the tangent intersection method showed better accuracy and precision than other methods, and could be used as a good surrogate of HRV.
Abstract: This work presents the evaluation of pulse rate variability (PRV) obtained from pulse onsets of photoplethysmographic (PPG) signals. Three published algorithms were used to determine the pulse onsets: diastolic point, maximum second derivative and tangent intersection. Temporal series of pulse onsets were obtained for each method, and several variability indices were derived from these series. Simultaneous ECG and PPG records were acquired from 37 healthy volunteers to evaluate the interchangeability between PRV indices and heart rate variability (HRV) indices by the Bland–Altman method. Furthermore, the concordance correlation coefficient was used to correlate the indices. In all the cases, PRV indices obtained through the tangent intersection method showed better accuracy and precision (Bland–Altman analysis, bias ± 1.96 standard deviation: low frequency, LFms 2 =− 28.06 ± 72.68; high frequency, HFms 2 =− 68.23 ± 192.85; high frequency in normalized units, HFnu = −2.02 ± 7.08; LF/HF = 0.17 ± 0.71) and higher correlation (concordance correlation coefficients: low frequency, LFms 2 = 0.99; high frequency, HFms 2 = 0.98; high frequency in normalized units, HFnu = 0.97; LF/HF = 0.90) with HRV indices than other methods, and could be used as a good surrogate of HRV.

Journal ArticleDOI
TL;DR: Ageing is associated with decoupling of QT variability from heart rate variability, and complexity analysis in addition to standard metrics may provide additional insight.
Abstract: Ageing has been associated with changes in cardiac electrophysiology that result in QT interval prolongation. The effect of age on rate-adaptation dynamics of the QT interval is less well understood. The aim of this study was to assess age-related changes in the temporal relationship between QT and RR interval variability. Resting ECG of 20 young and 20 elderly healthy subjects were analyzed. Beat-to-beat RR and QT interval time series were automatically extracted. Coupling between QT and RR was assessed by means of the QT variability index, coherence in the frequency domain, rate-corrected QT interval, cross-multiscale entropy, information based similarity index and joint symbolic dynamics. In addition to QT interval prolongation (433 ± 31 versus 405 ± 33 ms, p = 0.008), elderly subjects were characterized by a significantly increased QT variability index (-1.26 ± 0.28 versus -1.52 ± 0.22 ms, p < 0.0001), reduced coherence in high (0.11 ± 0.09 versus 0.29 ± 0.14 ms, p = 0.003), and low frequency bands (0.20 ± 0.16 versus 0.49 ± 0.15 ms, p < 0.0001), reduced information domain synchronization index (0.13 ± 0.07 versus 0.19 ± 0.05 ms, p = 0.001) as well as increased entropy and disparity in joint symbolic dynamics of QT and RR interval time series. In conclusion, ageing is associated with decoupling of QT variability from heart rate variability. Complexity analysis in addition to standard metrics may provide additional insight.

Journal ArticleDOI
TL;DR: The results indicate that the combined regularization algorithm with stable convergence is able to improve the reconstruction quality with sharp contrast and more robust to noise in comparison to the Tikhonov and LD regularization methods solely.
Abstract: A Tikhonov regularization method in the inverse problem of electrical impedance tomography (EIT) often results in a smooth distribution reconstruction, with which we can barely make a clear separation between the inclusions and background. The recently popular total variation (TV)regularization method including the lagged diffusivity (LD) method can sharpen the edges, and is robust to noise in a small convergence region. Therefore, in this paper, we propose a novel regularization method combining the Tikhonov and LD regularization methods. Firstly, we clarify the implementation details of the Tikhonov, LD and combined methods in two-dimensional open EIT by performing the current injection and voltage measurement on one boundary of the imaging object. Next, we introduce a weighted parameter to the Tikhonov regularization method aiming to explore the effect of the weighted parameter on the resolution and quality of reconstruction images with the inclusion at different depths. Then, we analyze the performance of these algorithms with noisy data. Finally, we evaluate the effect of the current injection pattern on reconstruction quality and propose a modified current injection pattern.The results indicate that the combined regularization algorithm with stable convergence is able to improve the reconstruction quality with sharp contrast and more robust to noise in comparison to the Tikhonov and LD regularization methods solely. In addition, the results show that the current injection pattern with a bigger driver angle leads to a better reconstruction quality.

Journal ArticleDOI
TL;DR: EEG activities after focal cerebral ischemia showed that functional recovery was closely correlated with the neural activities in the penumbra and correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase were found.
Abstract: Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague–Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural activities in the penumbra. Longitudinal EEG monitoring at different phases after a stroke can provide information on the neural activities, which are well correlated with the motor function recovery.

Journal ArticleDOI
TL;DR: To gauge the efficacy of the wireless power supply in a simulated real-world application, the biopsy and locomotion capabilities of the device were successfully tested in a slippery, soft tube and gut environment in vitro.
Abstract: This paper presents a wireless power transfer system integrated with an active locomotion and biopsy module in an endoscopic capsule for colon inspection. The capsule, which can move automatically, is designed for non-invasive biopsy and visual inspection of the intestine. To supply enough power for multiple functions and ensure safety for the human body, the efficiency of the current power transmission system needs to be improved. To take full advantage of the volume in the capsule body, a novel structure of receiving coils wound on a multi-core of MnZn ferrite hollow cylinder was used; with this new core, the efficiency increased to more than 7.98%. Up to 1.4 W of dc power can be delivered to the capsule as it travels along the gastrointestinal tract. Three micro motors were integrated for pumping, anchoring, locomotion and biopsy. A user interface and RF communication enables the operator to drive the capsule in an intuitive manner. To gauge the efficacy of the wireless power supply in a simulated real-world application, the biopsy and locomotion capabilities of the device were successfully tested in a slippery, soft tube and gut environment in vitro.

Journal ArticleDOI
Yuxiang Yang, Wenwen Ni, Qiang Sun, He Wen1, Zhaosheng Teng1 
TL;DR: This paper proposes an improved Cole parameter extraction based on the least absolute deviation (LAD) method and exhibits much better robustness under all circumstances, which demonstrates that the LAD method is deserving as an improved alternative to the LS method forCole parameter extraction for its robustness to outliers and noises.
Abstract: The Cole function is widely used in bioimpedance spectroscopy (BIS) applications. Fitting the measured BIS data onto the model and then extracting the Cole parameters (R0, R∞, α and τ) is a common practice. Accurate extraction of the Cole parameters from the measured BIS data has great significance for evaluating the physiological or pathological status of biological tissue. The traditional least-squares (LS)-based curve fitting method for Cole parameter extraction is often sensitive to noise or outliers and becomes non-robust. This paper proposes an improved Cole parameter extraction based on the least absolute deviation (LAD) method. Comprehensive simulation experiments are carried out and the performances of the LAD method are compared with those of the LS method under the conditions of outliers, random noises and both disturbances. The proposed LAD method exhibits much better robustness under all circumstances, which demonstrates that the LAD method is deserving as an improved alternative to the LS method for Cole parameter extraction for its robustness to outliers and noises.

Journal ArticleDOI
TL;DR: Results show that collagenase treated tissues were more compliant in the longitudinal direction as compared to control tissues, and elastin in arterial walls distributes tensile stresses whereas collagen serves to reinforce the vessel wall in the circumferential direction and also contributes to tissue anisotropy.
Abstract: We use enzymatic manipulation methods to investigate the individual and combined roles of elastin and collagen on arterial mechanics. Porcine aortic tissues were treated for differing amounts of time using enzymes elastase and collagenase to cause degradation in substrate proteins elastin and collagen and obtain variable tissue architecture. We use equibiaxial mechanical tests to quantify the material properties of control and enzyme treated tissues and histological methods to visualize the underlying tissue microstructure in arterial tissues. Our results show that collagenase treated tissues were more compliant in the longitudinal direction as compared to control tissues. Collagenase treatment also caused a decrease in the tissue nonlinearity as compared to the control samples in the study. A one hour collagenase treatment was sufficient to cause fragmentation and degradation of the adventitial collagen. In contrast, elastase treatment leads to significantly stiffer tissue response associated with fragmented and incomplete elastin networks in the tissue. Thus, elastin in arterial walls distributes tensile stresses whereas collagen serves to reinforce the vessel wall in the circumferential direction and also contributes to tissue anisotropy. A microstructurally motivated strain energy function based on circumferentially oriented medial fibers and helically oriented collagen fibers in the adventitia is useful in describing these experimental results.

Journal ArticleDOI
TL;DR: It is concluded that subject-specific anatomically accurate forward models should be used in lung EIT and extra care is required when analysing EIT images of subjects whose background conductivity distribution in the lungs is known to be heterogeneous or exhibiting large changes.
Abstract: Electrical impedance tomography (EIT) estimates an image of conductivity change within a body from stimulation and measurement at body surface electrodes. There is significant interest in EIT for imaging the thorax, as a monitoring tool for lung ventilation. To be useful in this application, we require an understanding of if and when EIT images can produce inaccurate images. In this paper, we study the consequences of the homogeneous background assumption, frequently made in linear image reconstruction, which introduces a mismatch between the reference measurement and the linearization point. We show in simulation and experimental data that the resulting images may contain large and clinically significant errors. A 3D finite element model of thorax conductivity is used to simulate EIT measurements for different heart and lung conductivity, size and position, as well as different amounts of gravitational collapse and ventilation-associated conductivity change. Three common linear EIT reconstruction algorithms are studied. We find that the asymmetric position of the heart can cause EIT images of ventilation to show up to 60% undue bias towards the left lung and that the effect is particularly strong for a ventilation distribution typical of mechanically ventilated patients. The conductivity gradient associated with gravitational lung collapse causes conductivity changes in non-dependent lung to be overestimated by up to 100% with respect to the dependent lung. Eliminating the mismatch by using a realistic conductivity distribution in the forward model of the reconstruction algorithm strongly reduces these undesirable effects. We conclude that subject-specific anatomically accurate forward models should be used in lung EIT and extra care is required when analysing EIT images of subjects whose background conductivity distribution in the lungs is known to be heterogeneous or exhibiting large changes.