scispace - formally typeset
Search or ask a question

Showing papers in "Systematic Entomology in 2016"


Journal ArticleDOI
TL;DR: This project is intended to be a roadmap for identifying those Coptotermes species names that need to be more thoroughly investigated, as an incentive to complete a necessary revision process of the genus.
Abstract: Coptotermes Wasmann (Isoptera: Rhinotermitidae) is one of the most economically important subterranean termite genera and some species are successful invaders. However, despite its important pest status, the taxonomic validity of many named Coptotermes species remains unclear. In this study, we reviewed all named species within the genus and investigated evidence supporting the validity of each named species. Species were systematically scrutinized according to the region of their original description: Southeast Asia, India, China, Africa, the Neotropics, and Australia. We estimate that of the currently 69 named species described by accepted nomenclatural rules, only 21 taxa have solid evidence for validity, 44 names have uncertain status, and the remaining species names should be synonymized or were made unavailable. Species with high degrees of invasiveness may be known under additional junior synonyms due to independent parochial descriptions. Molecular data for a vast majority of species are scarce and significant effort is needed to complete the taxonomic and phylogenetic revision of the genus. Because of the wide distribution of Coptotermes, we advocate for an integrative taxonomic effort to establish the distribution of each putative species, provide specimens and corresponding molecular data, check original descriptions and type specimens (if available), and provide evidence for a more robust phylogenetic position of each species. This study embodies both consensus and contention of those studying Coptotermes and thus pinpoints the current uncertainty of many species. This project is intended to be a roadmap for identifying those Coptotermes species names that need to be more thoroughly investigated, as an incentive to complete a necessary revision process.

53 citations


Journal ArticleDOI
TL;DR: It was shown with ML trees and bPTP models that a complementary use of mitochondrial and nuclear genes was the most relevant approach to reliably identify cryptic genetic clades in the Aphidiinae.
Abstract: Aphidiinae are mostly composed of specialist parasitoids and the few species described as generalist are suspected to be composed of cryptic specialists, almost indistinguishable based on morphological characteristics. The use of molecular markers has proven to be a useful tool for revealing cryptic species complexes and here we use seven mitochondrial and nuclear gene fragments to study possible genetic differentiation among seven Aphidiinae generalists. Maximum likelihood (ML) trees and Bayesian Poisson tree processes (bPTP) models were conducted on each gene separately and on the seven genes together. The standard cytochrome c oxidase I barcode region appeared to be the most polymorphic and probably the best marker to reveal putative cryptic species. However, we showed with ML trees and bPTP models that a complementary use of mitochondrial and nuclear genes was the most relevant approach to reliably identify cryptic genetic clades in the Aphidiinae. Overall, most of the analysed generalist morphospecies were shown to be composed of subgroups related to the aphid host, some of them revealed as cryptic species by the species delimitation analysis. Further studies are needed to reveal the generality of this result in Aphidiinae.

53 citations


Journal ArticleDOI
TL;DR: The first phylogenetic hypothesis for the subtribe Arctiina is provided with the basic aim of clarifying the phylogenetic position of the Wood Tiger Moth Parasemia plantaginis Hübner, a model species in evolutionary ecology.
Abstract: Despite being popular among amateur and professional lepidopterologists and posing great opportunities for evolutionary research, the phylogenetic relationships of tiger moths (Erebidae: Arctiinae) are not well resolved. Here we provide the first phylogenetic hypothesis for the subtribe Arctiina with the basic aim of clarifying the phylogenetic position of the Wood Tiger Moth Parasemia plantaginis Hubner, a model species in evolutionary ecology. We sampled 89 species in 52 genera within Arctiina s.l., 11 species of Callimorphina and two outgroup species. We sequenced up to seven nuclear genes (CAD, GAPDH, IDH, MDH, Ef1α, RpS5, Wingless) and one mitochondrial gene (COI) including the barcode region (a total of 5915 bp). Both maximum likelihood and Bayesian inference resulted in a well-resolved phylogenetic hypothesis, consisting of four clades within Arctiina s.s. and a clade comprising spilosomine species in addition to Callimorphina and outgroups. Based on our results, we present a new classification, where we consider the Diacrisia clade, Chelis clade, Apantesis clade, Micrarctia Seitz and Arctia clade as valid genera within Arctiina s.s., whereas Rhyparia Hubner syn.n. and Rhyparioides Butler syn.n. are synonymized with Diacrisia Hubner; Neoarctia Neumoegen & Dyar syn.n., Tancrea Pungeler syn.n., Hyperborea Grum-Grshimailo syn.n., Palearctia Ferguson syn.n., Holoarctia Ferguson syn.n., Sibirarctia Dubatolov syn.n. and Centrarctia Dubatolov syn.n. are synonymized with Chelis Rambur; Grammia Rambur syn.n., Orodemnias Wallengren syn.n., Mimarctia Neumoegen & Dyar syn.n., Notarctia Smith syn.n. and Holarctia Smith syn.n. are synonymized with Apantesis Walker; and Epicallia Hubner syn.n., Eucharia Hubner syn.n., Hyphoraia Hubner syn.n., Parasemia Hubner syn.n., Pericallia Hubner syn.n., Nemeophila Stephens syn.n., Ammobiota Wallengren syn.n., Platarctia Packard syn.n., Chionophila Guenee syn.n., Eupsychoma Grote syn.n., Gonerda Moore syn.n., Platyprepia Dyar syn.n., Preparctia Hampson syn.n., Oroncus Seitz syn.n., Acerbia Sotavalta syn.n., Pararctia Sotavalta syn.n., Borearctia Dubatolov syn.n., Sinoarctia Dubatolov syn.n. and Atlantarctia Dubatolov syn.n. are synonymized with Arctia Schrank, leading to 33 new genus-level synonymies. Our focal species Arctia plantaginis comb.n. is placed as sister to Arctia festiva comb.n., another widespread aposematic species showing wing pattern variation. Our molecular hypothesis can be used as a basis when adding more species to the tree and tackling interesting evolutionary questions, such as the evolution of warning signalling and mimicry in tiger moths.

48 citations


Journal ArticleDOI
TL;DR: The phylogenetic analyses of the ‘polymorphic earless praying mantises’, a heterogeneous assemblage comprising c.
Abstract: We perform phylogenetic analyses of the ‘polymorphic earless praying mantises’, a heterogeneous assemblage comprising c. 55% of mantodean diversity in the Neotropics. Bayesian and maximum‐likelihood were implemented on a DNA dataset of 9949 aligned nucleic acid characters comprising ten mitochondrial and nuclear genes. Our analyses largely resolved congruent relationships with high levels of support for higher‐level taxonomic groups, but revealed extensive inconsistencies between the resolved topology and morphology‐based classification systems. The polymorphic earless praying mantises, now granted superfamily status as the Acanthopoidea stat. n., comprises 8 families, 15 subfamilies and 18 tribes. Our newly revised organization required the following taxonomic changes: (i) Thespidae sensu n., including subfamilies Pseudopogonogastrinae subfam. n., Pseudomiopteryginae sensu n., Bantiinae subfam. n., Miobantiinae sensu n. and Thespinae sensu n. (tribes Musoniellini trib. n. and Thespini sensu n.); (ii) Angelidae stat. n. et sensu n.; (iii) Coptopterygidae stat. n.; (iv) Liturgusidae sensu n.; (v) Photinaidae stat. n., including Macromantinae stat. n., Cardiopterinae stat. n., Photiomantinae subfam. n. and Photinainae sensu n. (tribes Microphotinini trib. n., Orthoderellini stat. n. and Photinaini sensu n.); (vi) Stenophyllidae stat. n.; (vii) Acontistidae stat. n.; and (viii) Acanthopidae sensu n. Our new system also resulted in the reassignment of various genera to new and existing higher‐level taxa, the exclusion of old world genera otherwise traditionally classified among the Thespidae, Liturgusidae and Angelidae, the confirmation of Stenophylla Westwood as member of this clade, and the revalidation of Paradiabantia Piza stat. r. We provide diagnoses for all suprageneric taxa using external morphological characters and male genitalia. A key to higher‐level groups is provided. We incorporate egg case structural variation as a novel approach for taxon delineation.

43 citations


Journal ArticleDOI
TL;DR: It is found that machine vision methods are capable of correctly classifying large numbers of closely related species; and when the misclassification of a specimen occurs at the species level, it is often classified in the correct genus.
Abstract: Computer-automated identification of insect species has long been sought to support activities such as environmental monitoring, forensics, pest diagnostics, border security and vector epidemiology, to name just a few. In order to succeed, an automated identification programme capable of addressing the needs of the end user should be able to classify hundreds of taxa, if not thousands, and is expected to distinguish closely related and hence morphologically similar species. However, it remains unknown how automated identification methods might handle an increase in data quantity, be it in reference imagery or taxonomic diversity. We sought to test the scalability of an automated identification method in terms of the number of reference specimens used to train the classifier and the number of taxa into which the classifier should assign unknown specimens. Is there an optimal number of reference images, where the cost of acquiring more images becomes greater than the marginal increase in identification success? Does increasing taxonomic diversity affect identification success, whether negatively or positively? In order to test the scalability of the automated insect identification enterprise, we used a sparse processing technique and support vector machine to test the largest dataset to date: 72 species of fruit flies (Diptera: Tephritidae) and 76 species of mosquitoes (Diptera: Culicidae). We found that: (i) machine vision methods are capable of correctly classifying large numbers of closely related species; (ii) when the misclassification of a specimen occurs at the species level, it is often classified in the correct genus; (iii) classification success increases asymptotically as new training images are added to the dataset; (iv) broad taxon sampling outside a focal group can increase classification success within it.

42 citations


Journal ArticleDOI
TL;DR: An independent estimate of among‐family relationships of Gelechioidea is provided, showing that gelechioids have a higher total number and percentage of species that are saprophagous as larvae than any other apoditrysian superfamily and that sapropedagy is concentrated primarily in the ‘AXLO clade’.
Abstract: The Gelechioidea (>18 000 species), one of the largest superfamilies of Lepidoptera, are a major element of terrestrial ecosystems and include important pests and biological model species. Despite much recent progress, our understanding of the classification, phylogeny and evolution of Gelechioidea remains limited. Building on recent molecular studies of this superfamily and a recently revised family/subfamily classification, we provide an independent estimate of among-family relationships, with little overlap in gene sample. We analysed up to five nuclear genes, totalling 6633 bp, for each of 77 gelechioids, plus up to 14 additional genes, for a total of 14 826 bp, in 45 of those taxa and all 19 outgroup taxa. Our maximum-likelihood (ML) analyses, like those of previous authors, strongly support monophyly for most multiply-sampled families and subfamilies, but very weakly support most relationships above the family level. Our tree looks superficially divergent from that of the most recent molecular study of gelechioids, but when the previous tree is re-rooted to accord maximally with ours, the two phylogenies agree entirely on the deepest-level divergences in Gelechioidea, and strongly though incompletely on among-family relationships within the major groups. This concordance between independent studies is evidence that the groupings (or at least the unrooted branching order) are probably accurate, despite the low bootstrap values. After re-rooting, both trees divide the families into three monophyletic groups: a ‘Gelechiid Assemblage,’ consisting of Gelechiidae and Cosmopterigidae; a ‘Scythridid Assemblage,’ consisting of Stathmopodidae, Scythrididae, Blastobasidae, Elachistidae, Momphidae, Coleophoridae and Batrachedridae; and a ‘Depressariid Assemblage,’ consisting of Autostichidae, Xyloryctidae, Lecithoceridae, Oecophoridae, Depressariidae and Lypusidae. Within the largest family, Gelechiidae, our results strongly support the pairing of Anomologinae with Gelechiinae, in accordance with a recent study of this family. Relationships among the other subfamilies, however, conflict moderately to strongly between studies, leaving the intrafamily phylogeny unsettled. Within the ‘Scythridid Assemblage,’ both trees support an ‘SSB clade’ consisting of Blastobasidae + (Scythrididae + Stathmopodidae), strongly resolved only in our results. Coleophoridae + Batrachedridae is supported, albeit weakly, in both trees, and only Momphidae differ in position between studies. Within the ‘Depressariid Assemblage,’ both trees support an ‘AXLO’ clade consisting of Autostichidae, Xyloryctidae, Lecithoceridae and Oecophoridae. The monophyly of this clade and relationships therein are supported weakly in previous results but strongly in ours. The recently re-defined family Depressariidae is paraphyletic in our tree, but the evidence against depressariid monophyly is very weak. There is moderate support for a core group of Depressariidae consisting, among the seven subfamilies we sampled, of Depressariinae, Aeolanthinae and Hypertrophinae. We show that gelechioids have a higher total number and percentage of species that are saprophagous as larvae than any other apoditrysian superfamily, that saprophagy is concentrated primarily in the ‘AXLO clade,’ and that the ancestral gelechioid condition was probably feeding on live plants. Among the living-plant feeders, concealed external feeding was probably the ancestral state. The multiple origins of internal feeding of various kinds, including leaf mining (otherwise almost unknown in Apoditrysia), are restricted mostly to the Scythridid and Gelechiid Assemblages. The traits that predispose or permit lineages to adopt these unusual life histories are worthy of study.

42 citations


Journal ArticleDOI
TL;DR: In this study the phylogeny of the subfamily Bryocorinae has been analysed based on morphological data alone, with an emphasis on evaluating the tribe Dicyphina sensu Schuh, 1976, within which distinct groups of taxa exist.
Abstract: The classification of the hyperdiverse true bug family Miridae is far from settled, and is particularly contentious for the cosmopolitan subfamily Bryocorinae. The morphological diversity within the subfamily is pronounced, and a lack of explicit character formulation hampers stability in the classification. Molecular partitions are few and only a handful of taxa have been sequenced. In this study the phylogeny of the subfamily Bryocorinae has been analysed based on morphological data alone, with an emphasis on evaluating the tribe Dicyphina sensu Schuh, 1976, within which distinct groups of taxa exist. A broad sample of taxa was examined from each of the bryocorine tribes. A broad range of outgroup taxa from most of the other mirid subfamilies was also examined to test for bryocorine monophyly, ingroup relationships and to determine character polarity. In total a matrix comprising 44 ingroup, 15 outgroup taxa and 111 morphological characters was constructed. The phylogenetic analysis resulted in a monophyletic subfamily Bryocorinae sensu Schuh (1976, 1995), except for the genus Palaucoris, which is nested within Cylapinae. The tribe Dicyphini sensu Schuh (1976, 1995) has been rejected. The subtribe Odoniellina is synonymized with the subtribe Monaloniina and the subtribes Dicyphina, Monaloniina and Eccritotarsina are now elevated to tribal level, with the Dicyphini now restricted in composition and definition. The genus Felisacus is highly autapomorphic and a new tribe – the Felisacini – is erected for the included taxa. This phylogeny of the tribes of the Bryocorinae comprises the following sister-group relationships: Dicyphini ((Bryocorini + Eccritotarsini)(Felisicini + Monaloniini)).

40 citations


Journal ArticleDOI
TL;DR: Ancestral range reconstruction suggests that amblyoponines originated in the Afrotropics, and dispersed to the Indo‐Malayan region and to the New World, suggesting rapid radiation at the time of their origin.
Abstract: The ants in the subfamily Amblyoponinae are an old, relictual group with an unusual suite of morphological and behavioural features. Adult workers pierce the integument of their larvae to imbibe haemolymph, earning them the vernacular name ‘dracula ants’. We investigate the phylogeny of this group with a data set based on 54 ingroup taxa, 23 outgroups and 11 nuclear gene fragments (7.4 kb). We find that the genus Opamyrma has been misplaced in this subfamily: it is a member of the leptanilline clade and sister to all other extant Leptanillinae. Transfer of Opamyrma to Leptanillinae renders the Amblyoponinae monophyletic. The enigmatic Afrotropical genus Apomyrma is sister to all other amblyoponines, and the latter cleave into two distinct and well-supported clades, here termed POA and XMMAS. The POA clade, containing Prionopelta, Onychomyrmex and Amblyopone, is well resolved internally, and its structure supports synonymy of the genus Concoctio under Prionopelta (syn.n.). The XMMAS clade comprises two well-supported groups: (i) a predominantly Neotropical clade, for which we resurrect the genus name Fulakora (stat.r., stat.n.), with junior synonyms Paraprionopelta (syn.n.) and Ericapelta (syn.n.); and (ii) the remaining taxa, or ‘core XMMAS’, which are manifested in our study as a poorly resolved bush of about a dozen lineages, suggesting rapid radiation at the time of their origin. Most of these XMMAS lineages have been assigned to the catch-all genus Stigmatomma, but the more distinctive elements have been treated as separate genera (Xymmer, Mystrium, Myopopone and Adetomyrma). Resolution of basal relationships in the core XMMAS clade and reconfiguration of ‘Stigmatomma’ to restore monophyly of all named genera will require more extensive genetic data and additional morphological analysis. However, the genus Bannapone can be synonymized under Stigmatomma (syn.n.) because it is embedded within a clade that contains S. denticulatum, the type species of Stigmatomma. Divergence dating analysis indicates that crown Amblyoponinae arose in the mid-Cretaceous, about 107 Ma (95% highest probability density: 93–121 Ma). The POA and XMMAS clades have estimated crown ages of 47 and 73 Ma, respectively. The initial burst of diversification in the core XMMAS clade occurred in the Late Paleocene/Early Eocene (50–60 Ma). Ancestral range reconstruction suggests that amblyoponines originated in the Afrotropics, and dispersed to the Indo-Malayan region and to the New World. During none of these dispersal events did the ants break out of their cryptobiotic lifestyle.

40 citations


Journal ArticleDOI
TL;DR: Relationships among the subfamilies of Chrysomelidae inferred from small subunit ribosomal DNA and morphology, with special emphasis on the relationship among the flea beetles and the Galerucinae.
Abstract: . Duckett, C.N. (1997) The scientific method and the predictive value of classification. Chrysomela, 34, 3–4. Duckett, C.N., Gillespie, J.J. & Kjer, K.M. (2004) Relationships among the subfamilies of Chrysomelidae inferred from small subunit ribosomal DNA and morphology, with special emphasis on the relationship among the flea beetles and the Galerucinae. New Developments in the Biology of Chrysomelidae (ed. by P. Jolivet, J.A. Santiago-Blay and M. Schmitt), pp. 3–18. SPB Academic Publishing, The Hague. Duffy, E.A.J. (1953) A Monograph of the Immature Stages of British and Imported Timber Beetles (Cerambycidae). British Museum (Natural

39 citations


Journal ArticleDOI
TL;DR: The Polysphincta group was recovered as monophyletic, although relationships between genera were different from previous hypotheses based on morphological data, and the evolution of larval and cocoon morphology and the mode of parasitism are discussed.
Abstract: The phylogenetic relationships between genera of the Polysphincta group of Pimplinae (Ichneumonidae) were surveyed using molecular markers, partial sequences of cytochrome c oxidase I (COI), 28S rRNA and elongation factor 1α, and maximum likelihood and Bayesian approaches to obtain a robust phylogenetic hypothesis to understand the evolution of the group. The Polysphincta group was recovered as monophyletic, although relationships between genera were different from previous hypotheses based on morphological data. Within the Polysphincta group, three major clades were recognized and phylogenetic relationships among them were well resolved as (Schizopyga subgroup + (Acrodactyla subgroup + Polysphincta subgroup)). The Schizopyga subgroup consisted of the genera Piogaster, Schizopyga, Zabrachypus and Brachyzapus. As the genus Schizopyga was found to be polyphyletic, the genus Dreisbachia, which had been synonymized under Schizopyga, was resurrected and Iania gen.n. is proposed for Dreisbachia pictifrons, to maintain monophyletic genera. Species of the Schizopyga subgroup utilize spiders constructing egg-laying chambers or funnel webs as hosts. The genus Piogaster was not recovered as the sister to all other members of the genus group, unlike previous hypotheses, but was nested in this clade as (Zabrachypus + ((Brachyzapus + Schizopyga) + (Dreisbachia + (Iania + Piogaster)))). Members of the Acrodactyla and Polysphincta subgroups attack spiders that weave aerial webs. The host range of the former is centred on tetragnathid and linyphiid spiders, the host range of the latter seems to centre mainly on orb-weaving araneids and partly on theridiids weaving three-dimensional (3D) irregular webs. Based on the obtained phylogeny of the group, the evolution of larval and cocoon morphology, and the mode of parasitism are discussed. Acrodactyla varicarinata Uchida & Momoi and A. inoperta Kusigemati are transferred to the genus Megaetaira (comb.n.). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:0AB1086F-9F23-4057-B7ED-3A3943E19C61.

34 citations


Journal ArticleDOI
TL;DR: A newly revised phylogenetic framework for Tabanidae forms the basis for a new assessment of tabanid diversification and provides context for understanding the evolution of trophic specialization in horse flies.
Abstract: Horse flies, family Tabanidae, are the most diverse family-level clade of bloodsucking insects, but their phylogeny has never been thoroughly explored using molecular data. Most adult female Tabanidae feed on nectar and on the blood of various mammals. Traditional horse fly classification tends towards large heterogeneous taxa, which impede much-needed taxonomic work. To guide renewed efforts in the systematics of horse flies and their relatives, we assembled a dataset of 110 exemplar species using nucleotide data from four genes—mitochondrial CO1, and nuclear 28S, CAD and AATS. All commonly recognized tribes in Tabanidae are represented, along with outgroups in Tabanomorpha. The phylogeny is reconstructed using Bayesian inference, and divergence times are estimated using Bayesian relaxed clock methods with time constraints from tabanid fossils. Our results show Athericidae strongly supported as the lineage most closely related to Tabanidae, and Pangoniinae and Tabaninae as monophyletic lineages. However, Chrysopsinae is nonmonophyletic, with strong support for both a nonmonophyletic Bouvieromyiini and for Rhinomyzini as sister to Tabaninae. Only the tribes Philolichini, Chrysopsini, Rhinomyzini and Haematopotini are recovered as monophyletic, although Scionini is monophyletic with exclusion of the peculiar genus Goniops Aldrich. Mycteromyia Philippi and Adersia Austen, two enigmatic genera sometimes placed in separate family-level groups, are recovered inside Pangoniini and Chrysopsini, respectively. Several species-rich genera are not recovered as monophyletic, including Esenbeckia Rondani, Silvius Meigen, Dasybasis Macquart and Tabanus L. Tabanidae likely originated in the Cretaceous, and all major extant groups were present by the early Palaeogene. This newly revised phylogenetic framework for Tabanidae forms the basis for a new assessment of tabanid diversification and provides context for understanding the evolution of trophic specialization in horse flies.

Journal ArticleDOI
TL;DR: The current tribal classification of Larentiinae is not controversial from the phylogenetic point of view and that its increasing complexity has merely reflected the accumulation of information, mainly through different methods of biosystematic study having become available for researchers.
Abstract: Larentiinae are the second largest subfamily of Geometridae, with more than 6200 described species. Despite recent advances in molecular systematics of geometrid moths, phylogenetic relationships between the numerous subgroups of Larentiinae are poorly known. In this study we present the most comprehensive attempt to date to resolve the phylogeny of Larentiinae, having sampled at least one species from all currently recognized 23 tribes. Fragments of one mitochondrial (COI) and eight nuclear (EF‐1α, WGL, GAPDH, RPS5, IDH, MDH, CAD and 28S) genes were sequenced, for a total of 6939 bp. Maximum likelihood and Bayesian analyses resulted in identical well‐resolved phylogenetic trees, which had maximum or near‐maximum support values at most nodes. Almost all conventionally recognized tribes represented by more than one genus were found to be monophyletic. Close to the root of Larentiinae, six tribes branch off the main lineage one after another, with Dyspteridini being sister to all other members of the subfamily. The rest of larentiines are divided into two very diverse lineages, comprising eight and at least ten tribes, respectively. There were just three findings incongruent with the conventional tribal subdivision of the subfamily. First, the genera Collix Guenée and Anticollix Prout formed a separate, previously unrecognized but well‐supported clade at the tribe level. Second, the Palaearctic genus Pelurga Hübner was placed apart from Larentia Treitschke and Mesoleuca Hübner, which were the other members of Larentiini in this analysis. Third, Cataclysmini appeared together with genera belonging to Xanthorhoini, leaving the latter paraphyletic. The Neotropic genus Oligopleura Herrich‐Schäffer is shown to belong to the tribe Euphyiini (comb.n.) according to both molecular data and male genital morphology. The results and the tribal classification of Larentiinae are discussed with reference to the principal publications since the end of the 19th Century. We conclude that the current tribal classification of Larentiinae is not controversial from the phylogenetic point of view and that its increasing complexity has merely reflected the accumulation of information, mainly through different methods of biosystematic study having become available for researchers. Our results indicate that diurnal lifestyle, accompanied by conspicuous coloration, has evolved independently in several subgroups of Larentiinae.

Journal ArticleDOI
TL;DR: Fossils from mid‐Cretaceous Burmese amber are described that confirm the existence of crown‐group higher pselaphines on the Eurasian supercontinent prior to contact with Gondwanan landmasses and imply that higher p Selaphines are indeed probably of Jurassic, Pangaean extraction and that the Laurasian‐Gondwanaan tribal dichotomy of this clade may have developed vicariantly following Pangaian rifting.
Abstract: Pselaphinae is an exceptionally species-rich, globally distributed subfamily of minute rove beetles (Staphylinidae), many of which are inquilines of social insects. Deducing the factors that drove pselaphine diversification and their evolutionary predisposition to inquilinism requires a reliable timescale of pselaphine cladogenesis. Pselaphinae is split into a small and highly plesiomorphic supertribe, Faronitae, and its sister group, the ‘higher Pselaphinae’ – a vast multi-tribe clade with a more derived morphological ground plan, and which includes all known instances of inquilinism. The higher Pselaphinae is dominated by tribes with a Gondwanan taxonomic bias. However, a minority of tribes are limited to the Nearctic and Palearctic ecozones, implying a potentially older, Pangaean origin of the higher Pselaphinae as a whole. Here, I describe fossils from mid-Cretaceous (∼99 million years old) Burmese amber that confirm the existence of crown-group higher pselaphines on the Eurasian supercontinent prior to contact with Gondwanan landmasses. Protrichonyx rafifrons gen. et sp.n. is placed incertae sedis within the higher Pselaphinae. Boreotethys gen.n., erected for B. grimaldii sp.n. and B. arctopteryx sp.n., represents an extinct sister taxon and putative stem group of Bythinini, a Recent tribe with a primarily Holarctic distribution. The Laurasian palaeolocality of the newly described taxa implies that higher pselaphines are indeed probably of Jurassic, Pangaean extraction and that the Laurasian-Gondwanan tribal dichotomy of this clade may have developed vicariantly following Pangaean rifting. Higher pselaphines probably predate the earliest ants. Their physically protective morphological ground plan may have been a preadaptation for myrmecophily when ants became diverse and ecologically ubiquitous, much later in the Cenozoic. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:36E3FE2A-B947-422D-89CA-0EF43B99C382.

Journal ArticleDOI
TL;DR: A comprehensive morphological comparison of the sclerites of male and female genital segments in 23 megalopteran genera representing all major lineages of Corydalinae, Chauliodinae and Sialidae is presented and an intergeneric phylogeny including all genera of Megaloptera is reconstructed using genital characters in a parsimonious analysis to test their phylogenetic relevance.
Abstract: The genitalia of Megaloptera are crucial for taxonomic identification and represent a significant component of characters for phylogenetic interpretation of this order. However, several complex genital structures, especially those related to segments 9 and 11 in Megaloptera, have yet to be subjected to a comprehensive survey of homology. The terminology for genital sclerites has been variously and even incorrectly used by different authors, a fact which could lead to much confusion about character evolution. In this paper, we first present a comprehensive morphological comparison of the sclerites of male and female genital segments in 23 megalopteran genera representing all major lineages of Corydalinae, Chauliodinae and Sialidae. Accordingly, we then provide new interpretations on the homology of the genital sclerites which often appear to be considerably different among Megaloptera. Based on our new and revised homology assessments, we conclude that: (i) the small to medium-sized sclerite beneath the ectoprocts in males of Sialidae represents the fused gonocoxites 11; (ii) the male gonocoxites 11 in Corydalidae are largely reduced and are sometimes retained as a small sclerite beneath the anus; (iii) the predominant sternite-like sclerite of the female abdominal segment 8 represents the fused gonocoxites 8; and (iv) a pair of sclerites amalgamated with the lateral arms of male gonocoxites 10 in Chauliodinae is the gonocoxites 9. Furthermore, based on our genital homology assessments, we reconstruct an intergeneric phylogeny including all genera of Megaloptera using genital characters in a parsimonious analysis to test their phylogenetic relevance. The phylogeny herein recovered is largely congruent with the results from several previous studies, thus underlying the significant phylogenetic relevance of the megalopteran genital sclerites. The present work provides new insights into the evolution of insect genitalia.

Journal ArticleDOI
TL;DR: Phylogenetic relationships among major lineages of the leafhopper subfamily Iassinae were explored by analysing a dataset of 91 discrete morphological characters and DNA sequence data from nuclear 28S rDNA and histone H3 genes and mitochondrial 12S r DNA, suggesting that the group most likely has a Neotropical origin.
Abstract: Phylogenetic relationships among major lineages of the leafhopper subfamily Iassinae were explored by analysing a dataset of 91 discrete morphological characters and DNA sequence data from nuclear 28S rDNA and histone H3 genes and mitochondrial 12S rDNA. Bayesian, maximum‐likelihood and maximum parsimony analyses yielded similar tree topologies that were well resolved with strong branch support except at the base of the tree, resulting in equivocal support for inclusion of Bythoniini as a tribe of Iassinae but strong support for the monophyly of Iassinae (excluding Bythoniini) and most previously recognized iassine tribes. Divergence times for recovered nodes were estimated using a Bayesian relaxed clock method with two fossil calibration points. The results suggest that the deepest divergences coincided with Gondwanan vicariant events but that more recent divergences resulted from long‐range dispersal and colonization. Biogeographical analyses suggest that the group most likely has a Neotropical origin. The following changes to the taxonomic classification are proposed: establishment of three new tribes, Batracomorphini trib.n. (based on type genus Batracomorphus Lewis), Hoplojassini trib.n. (based on type genus Hoplojassus Dietrich and including one other South American genus), Lipokrisnini trib.n. (based on type genus Lipokrisna Freytag and including two other endemic Caribbean genera); Krisnini is redefined to include only the Old World genera Krisna and Gessius; Iassini is redefined to include only the type genus and four endemic Afrotropical genera; Bascarrhinus Fowler and Platyhynna Berg, recently treated as genera incertae sedis, are placed in Hyalojassini; Thalattoscopus Kirkaldy is added to the previously monobasic tribe Trocnadini. Iassinae now includes 12 tribes, all of which appear to be monophyletic. Revised morphological diagnoses of the subfamily and each of the included tribes are provided and a key to tribes is also given.

Journal ArticleDOI
TL;DR: The first phylogenetic analysis of the subfamily Tanypodinae based on morphological data is presented, supporting the monophyly of TanyPodinae with Podonominae as its sister group and suggesting re‐establishment of Helopelopia as a genus, but refrain from promoting genus‐level status of Cantopelopian at present.
Abstract: The nonbiting midge subfamily Tanypodinae represents one of the most diverse lineages of Chironomidae. Despite the wide distribution and high diversity of tanypodine chironomids, the evolutionary history of the subfamily remains poorly understood. Here, we present the first phylogenetic analysis of the subfamily Tanypodinae based on morphological data. Cladistic analyses were conducted using 86 morphological characters from 115 species belonging to 54 tanypodine genera, including the eight currently recognised tribes: Anatopyniini, Clinotanypodini, Coelopyniini, Macropelopiini, Natarsiini, Pentaneurini, Procladiini and Tanypodini. We use characters from fourth-instar larvae, pupae and adults of both sexes. We examine the effects of implied weighting by reanalysing the data with varying values of concavity constant (k). Our analysis supports the monophyly of Tanypodinae with Podonominae as its sister group. All previously proposed tribes are recovered as monophyletic assemblages under a wide range of weighting factors. Under these conditions, the genus Fittkauimyia is the sister group of the remaining Macropelopiini and is erected as a new monobasic tribe, Fittkauimyiini trib.n. The tribe Pentaneurini is recovered as monophyletic with some internal relationships resolved. The genus Paramerina, recovered as sister of Reomyia + Zavrelimyia, is formally synonymised with Zavrelimyia syn.n., based on morphological similarity in all three life stages and treated as a subgenus of the latter. Finally, the recently suggested synonymies of Gressittius and Guassutanypus with Alotanypus and the establishment of the subgenera Conchapelopia (Helopelopia), Macropelopia (Bethbilbeckia), Monopelopia (Cantopelopia), Thienemannimyia (Hayesomyia) and Zavrelimyia (Reomyia and Schineriella) are investigated. Our results support all proposed changes, except for the subgenus-level status of Helopelopia and Cantopelopia. We suggest re-establishment of Helopelopia as a genus, but refrain from promoting genus-level status of Cantopelopia at present because the apparent sister-relationship between Monopelopia + Nilotanypus likely is due to wing vein reduction caused by miniaturisation. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:DF012C17-AFB3-4904-83DC-30DD94D0B376.

Journal ArticleDOI
TL;DR: While many previous treatments have stated explicitly that Acronictinae lack abdominal scent brushes, or excluded genera with brushes from the subfamily, it is shown that well‐developed brushes are present in three early diverging acronictine genera: Cerma, Lophonycta, and Sinocharis.
Abstract: We present results of an eight-gene molecular study of the subfamily Acronictinae and related Noctuidae. Amphipyrinae are recovered as sister to Acronictinae, but with weak support - not surprisingly, the content of the two subfamilies has often been mixed in classifications. Balsinae, previously placed near Acronictinae or within Noctuinae, is recovered within an unresolved polytomy of Cuculliinae, Eustrotiinae, Raphiinae and Dilobinae. Gerbathodes Warren, Moma Hubner and Nacna Fletcher are excluded from Acronictinae. Three genera recently transferred into the subfamily - Cerma Hubner, Chloronycta Schmidt & Anweiler and Comachara Franclemont - are confirmed as acronictines. Lophonycta Sugi (the type genus of Lophonyctinae) is returned to the Acronictinae. Sinocharis Pungeler, formerly considered to be Acontiinae or as the basis of its own subfamily Sinocharinae, is nested within early diverging Acronictinae genera. Both subfamilies are formally synonymized: i.e. Lophonyctinae syn.n. and Sinocharinae syn.n. Nine acronictine genus-level taxa were found to nest within the nominate genus Acronicta Ochsenheimer: Eogena Guenee, Hyboma Hubner, Hylonycta Sugi, Jocheaera Hubner, Oxicesta Hubner, Simyra Ochsenheimer, Subacronicta Kozhanchikov, Triaena Hubner, and Viminia Chapman. Eogena, Oxicesta, and Simyra, currently treated as valid genera, nest within terminal clades of the genus Acronicta and are here subsumed within the genus: Eogena syn.n., Oxicesta syn.n. and Simyra syn.n. Four well-supported species groups within Acronicta are identified: the alni clade, the leporina clade, the nervosa clade and the psi clade. While many previous treatments have stated explicitly that Acronictinae lack abdominal scent brushes, or excluded genera with brushes from the subfamily, we show that well-developed brushes are present in three early diverging acronictine genera: Cerma, Lophonycta, and Sinocharis. We illustrate and describe the brushes of all three genera, and briefly review the taxonomic distribution of the anterior abdominal courtship brushes in Noctuidae, emphasizing the labile evolutionary distribution of these structures. (Less)

Journal ArticleDOI
TL;DR: According to the combined analysis, the genus Dendroctonus is a monophyletic group defined by at least three synapomorphic characters and there are four main lineages of varied composition and diversity within the genus.
Abstract: Bark beetles in the genus Dendroctonus may attack and kill several species of coniferous trees, some of them causing major economic losses in temperate forests throughout North and Central America. For this reason, they have been widely studied. However, various aspects of the taxonomy and evolutionary history of the group remain contentious. The genus has been subdivided in species groups according to morphological, biological, karyological or molecular attributes, but the evolutionary affinities among species and species groups within the genus remain uncertain. In this study, phylogenetic relationships among Dendroctonus species were reassessed through parsimony-based cladistic analysis of morphological and DNA sequence data. Phylogenetic inference was based on 36 morphological characters and on mitochondrial DNA sequences of the cytochrome oxidase I (COI) gene. Analyses were carried out for each dataset, as well as for the combined data analysed simultaneously, under equal and implied weights. According to the combined analysis, the genus Dendroctonus is a monophyletic group defined by at least three synapomorphic characters and there are four main lineages of varied composition and diversity within the genus. Within these lineages, several monophyletic groups match, to some extent, species groups defined by previous authors, but certain groups proposed by those authors are polyphyletic or paraphyletic.

Journal ArticleDOI
TL;DR: C H A R L E S M O R P H Y D .
Abstract: C H A R L E S M O R P H Y D . S A N T O S 1, D A L T O N S . A M O R I M 2, B R U N A K L A S S A 1, D I E G O A . F A C H I N 2, S I L V I O S . N I H E I 3, C L A U D I O J . B . D E C A R VA L H O 4, R A F A E L A L . F A L A S C H I 5, C Á T I A A . M E L L O P A T I U 6, M Á R C I A S . C O U R I 6, S A R A H S . O L I V E I R A 7, V E R A C . S I L VA 8, G U I L H E R M E C . R I B E I R O 1, R E N A T O S . C A P E L L A R I 9 and C A R L O S J O S É E . L A M A S 5

Journal ArticleDOI
TL;DR: A distinct pattern of correlated evolution of morphological characters linked to crypsis was uncovered, and cuticular leg lobes within single leg segments are evolving as sets, and serially homologous lobes appear simultaneously or in close succession in Vatinae.
Abstract: The Neotropical praying mantis tribe Vatini Stal is revised using total evidence phylogenetic analysis based on molecular and coded morphological data. The subfamily Vatinae is redefined to only include Neotropical taxa with the removal of distantly related African and Asian lineages. A new tribe is erected under Vatinae (Heterovatini trib.n.) for two unique genera with historically unstable taxonomic placement (Heterovates Saussure and Chopardiella Giglio-Tos). Phylogenetic results and morphology support the synonymy of three genera (Lobovates Deeleman-Reinhold, Phyllovates Kirby, and Hagiotata Saussure & Zehntner) and the validity of Chopardiella Giglio-Tos, Heterovates Saussure, Callivates Roy, Pseudovates Saussure, Vates Burmeister, and Zoolea Audinet Serville. A new genus (Alangularis gen.n.) is created for a former species of Vates with unique morphology and separate phylogenetic placement. All genera are redescribed based on external morphology and the male genital complex. A key to genera for Vatinae is provided with dorsal habitus images of representatives for each genus. A distinct pattern of correlated evolution of morphological characters linked to crypsis was uncovered. Cuticular leg lobes within single leg segments are evolving as sets, and serially homologous lobes appear simultaneously or in close succession. The posteroventral lobes in the apical position on thoracic femora appear to be the precursors to multiple positive rate shifts in the evolutionary accumulation of cryptic features. One shift occurred early in the evolution of Vatinae while the second occurred much later, after the loss and re-evolution of the posteroventral lobes in the apical position on thoracic femora, a violation of Dollo's law. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:724C16AF-069A-46A1-B66C-007D8DE18C68.

Journal ArticleDOI
TL;DR: According to this hypothesis, the diversification of Augochlorini may have begun as a response to vicariant events, including the split of the Neotropical/Andean regions and marine transgressions in the Amazon region.
Abstract: The Augochlorini Beebe is a New World tribe of bees comprising 663 described species. Relationships among the genera of this monophyletic tribe remain uncertain. Here I provide a comprehensive phylogeny using morphological and molecular information. In all, 54 Augochlorini species plus 16 outgroups and 3017 molecular and 105 morphological characters were analysed. Sequences for four genes were analysed using Bayesian inference, maximum likelihood and parsimony. Morphological characters were taken from a literature review and analysed alone and in combination with molecular data using parsimony. The monophyly of Augochlorini and most genera is confirmed, with divergence of the main lineages of the tribe around 55–20 Ma. Seven clades were supported by most analyses and are here treated as genus‐level groups, as follows (combined analysis topology): (Corynura group, (Chlerogella group, (Rhinocorynura group, (Augochloropsis, (Megaloptidia group, (Neocorynura group, (Augochlora group, Megalopta group))))))). According to this topology, dim‐light foraging and cleptoparasitism arose three times in the tribe. According to my hypothesis, the diversification of Augochlorini may have begun as a response to vicariant events, including the split of the Neotropical/Andean regions and marine transgressions in the Amazon region.

Journal ArticleDOI
TL;DR: A Neotropical origin for spider ants with dispersal to Australia is supported and rafting on west‐bound currents and/or a historical diversity imbalance between Australia and South America are proposed as alternate hypotheses to explain a pattern of biased E–W mid‐Tertiary dispersal for ants with austral distributions.
Abstract: Spider ants of the genus Leptomyrmex Mayr (Hymenoptera: Formicidae: Dolichoderinae) are conspicuous species of Australasian rainforests, with putative fossil relatives in the Neotropics and Europe. There is longstanding debate over the biogeographical history of the genus, with the Palaearctic and Neotropical regions proposed as alternate centres of origin. We propose a resolution of this debate with the recent discovery and analysis of an extant species from central Brazil, L. relictus sp.n., which we describe from workers, males and brood. We sequence ten nuclear genes in the new species and in several Australian Leptomyrmex species, and append these data to a 54-taxon, 10-gene data matrix previously generated for the subfamily Dolichoderinae. We conduct phylogenetic and divergence dating analyses, and re-evaluate the fossil record of the group. We recover Leptomyrmex relictus sp.n. as a member of the Leptomyrmex clade with high support. It is sister to the Australasian species, and the genus Leptomyrmex is, in turn, sister to a pair of Neotropical genera, Forelius and Dorymyrmex. We infer a Neotropical origin for the genus and estimate a mid-Eocene (46 Ma, 95% CI 56 to 36 Ma) origin for the crown genus and an Oligocene origin for the Australasian clade (29 Ma, 95% CI 40 to 19 Ma). We confirm placement of the Dominican amber species †L. neotropicus Baroni Urbani in the genus but reject a close relationship with the Palaearctic fossil taxa †Leptomyrmula Emery and †Usomyrma Dlussky, Radchenko & Dubovikoff, considering them incertae sedis in the subfamily (Dolichoderinae). In contrast to the mesophilic preferences of the Australasian species of Leptomyrmex, the new Brazilian species inhabits cerrado (dry savannah). Our results support a Neotropical origin for spider ants with dispersal to Australia. Rafting on west-bound currents and/or a historical diversity imbalance between Australia and South America are proposed as alternate hypotheses to explain a pattern of biased E–W mid-Tertiary dispersal for ants with austral distributions. This pattern is suggested by our results in conjunction with observations of other ant clades. Overall, our findings highlight the value of integrated taxonomy, critical interpretation of morphology, and a comparative phylogenetic framework when conducting palaeontological and biogeographical studies of insect species. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:6E9E6617-6E53-40B8-82C7-67F89A83C553.

Journal ArticleDOI
TL;DR: Microsatellite data indicate rarely occurring admixture events only, showing that independent evolutionary history is the norm in S. g.
Abstract: We evaluated the validity of the subspecific designation for Schistocerca gregaria gregaria (Forskal) and Schistocerca gregaria flaviventris (Burmeister), isolated in distinct regions along the north–south axis of Africa. Towards this goal, we assessed the variation of multiple morphological and molecular traits within species. We first used elliptic Fourier and landmark-based relative warps analyses to compare the size and shape of two internal and two external structures of male genitalia. We provide a discriminant function which classified the specimens with 100% accuracy and selected shape elements of the external structures only (cercus and epiproct). We also tested eight molecular markers, and because of either absence of variation or contamination by mitochondrial DNA (mtDNA)-like sequences, we used a clone-and-sequence analysis of the standard cytochrome c oxidase subunit I mitochondrial DNA barcode only. We differentiated 185 true mitochondrial sequences from 66 mitochondrial DNA-like sequences, most of which were from S. g. gregaria specimens. On the dataset of mitochondrial origin, we identified three characteristic point mutations that diagnosed the two allopatric subspecies with 94% accuracy. Minimum spanning network and parsimony tree analyses identified S. g. flaviventris as a monophyletic lineage distinct from the nominate subspecies. Accordingly, microsatellite data indicate rarely occurring admixture events only, showing that independent evolutionary history is the norm. (Resume d'auteur)

Journal ArticleDOI
TL;DR: Flightlessness was attained repeatedly and resulted in convergent evolution of a similar habitus in different zoogeographic regions, mainly exhibited by the polyphyletic genus Acalles Schoenherr.
Abstract: The monophyly of the highly diverse weevil subfamily Cryptorhynchinae is tested with a dataset of 203 taxa representing 159 genera of Curculionoidea, 105 of them Cryptorhynchinae s.l. We construct a phylogeny based on an alignment of 5523 bp, consisting of fragments from two mitochondrial genes (two fragments of COI, 16S) and seven nuclear genes (ArgK, CAD, EF1, enolase, H4, 18S, 28S). Analyses of maximum likelihood and Bayes inference recovered largely congruent results. Groups with different morphology of the rostral furrow (e.g. Aedemonini, Camptorhinini, Cryptorhynchini, Ithyporini) are not closely related to each other. However, most taxa with a mesosternal receptacle are monophyletic and here defined as Cryptorhynchinae s.s., comprising Cryptorhynchini, Gasterocercini, Torneumatini and Psepholacini, but also Arachnopodini and Idopelma Faust. The genus PhyrdenusLeConte is excluded from Cryptorhynchinae and transferred to Conotrachelini of Molytinae. Thus defined, the group still comprises several thousand species with centres of its diversity in South America and Australia. The early lineages we find in America and the Palearctic, while the extremely diverse faunas of Australia and neighbouring islands mainly belong to a more recent, species-rich radiation. This also includes a clade comprising the majority of litter-inhabiting species of New Zealand and the genus Miocalles Pascoe. Flightlessness was attained repeatedly and resulted in convergent evolution of a similar habitus in different zoogeographic regions, mainly exhibited by the polyphyletic genus Acalles Schoenherr.

Journal ArticleDOI
TL;DR: This work provides a description and discussion on characters of the head capsule, mandibles and sitophore of bees, and an attempt is made to standardize the current terminology used for bees and for other Hymenoptera.
Abstract: Phylogenetic relationships of corbiculate bees have been a well-known focus of controversies over the past 30 years. The majority of the morphological datasets support the monophyly of Apina + Meliponina, whereas molecular datasets recover Meliponina as sister to Bombina. This issue is especially critical to the proper understanding of the evolution of clusters of traits that define the corbiculate eusocial behaviour. This work provides a description and discussion on characters of the head capsule, mandibles and sitophore of bees. Thirty-three characters are proposed and optimized within concurrent phylogenetic hypotheses for corbiculate bees, which results in seven derived character-states supporting the monophyly of the Apina + Meliponina + Bombina and nine supporting the Apina + Meliponina clades. Although some striking synapomorphies (e.g. tentorial bridge, pleurostomal condyle, hypopharyngeal lobe) support the former clade, most characters supporting the latter (i.e. Apina + Meliponina) were losses/reductions. Moreover, two previously undescribed character transformations on hypostoma and sitophore favour the Bombina + Meliponina clade. Internal head capsule characters are useful for phylogenetic analysis in comparative studies of bees, and corbiculate bees in particular, when efforts are made to solve the ‘corbiculate controversy’. An attempt is made to standardize the current terminology used for bees and for other Hymenoptera.

Journal ArticleDOI
TL;DR: Ninety‐six morphological characters of the larvae and adults of 17 extant clerid representatives and seven cleroid families as outgroups were analysed under maximum parsimony and the resulting trees appear congruent with the latest molecular phylogenies of Cleridae.
Abstract: . Three fossil beetles recorded from Inner Mongolia, China (Callovian, Middle Jurassic, approximately 165 Ma) are assigned to Cleridae and constitute the earliest known representatives of this family. Two of the fossils are described as Protoclerus korynetoides gen. et sp.n. and the third as Wangweiella calloviana gen. et sp.n. Ninety-six morphological characters of the larvae and adults of 17 extant clerid representatives and seven cleroid families as outgroups were analysed under maximum parsimony with, and without, fossil species included in the matrix. The results indicate that Protoclerus gen.n. is a separate lineage within the family, whereas Wangweiella gen.n. is sister to the rest of Epiclininae. The resulting trees are compared with the most recent morphological and molecular phylogenies of Cleridae. The trees presented appear congruent with the latest molecular phylogenies. The evolution of Cleridae, as well as their biogeography and systematics, are briefly reviewed. A complete list of clerid fossil species described to date is provided. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:32240D3D-2A7A-41F6-B485-A66F2265CB8A.

Journal ArticleDOI
TL;DR: Hydroptilidae constitute the most diverse caddisfly family, with over 2000 species known from every habitable continent and some nomenclatural changes are proposed to reflect their phylogenetic history.
Abstract: Hydroptilidae constitute the most diverse caddisfly family, with over 2000 species known from every habitable continent. Leucotrichiinae are exclusively New World microcaddisflies, currently including over 200 species and 17 genera. Phylogenetic analyses of Leucotrichiinae relationships based on 114 morphological characters and 2451 molecular characters from DNA sequences were conducted. DNA sequences analysed were from one mitochondrial gene, cytochrome oxidase I (653 bp), and four nuclear genes, carbamoylphosphate synthase (802 bp), elongation factor 1α (352 bp), histone 3 (308 bp) and 28S rDNA (336 bp). The morphological matrix included 94 taxa (with representatives of all included genera) and the molecular matrix included 62 taxa. Individual and combined datasets were analysed under parsimony and Bayesian inference. In addition, a relaxed molecular clock divergence time estimate was conducted to determine the age of the subfamily and major lineages. All Bayesian inference analyses strongly suggest a monophyletic Leucotrichiinae, which initially diverged at approximately 124 Ma into two monophyletic groups of genera. These groups are herein elevated to tribal status, Alisotrichiini trib.n. and Leucotrichiini Flint sensu n. Several genera of Leucotrichiini were not recovered as monophyletic clades and some nomenclatural changes are proposed to reflect their phylogenetic history. These include the synonymy of Abtrichia with Peltopsyche; transfer of Betrichia hamulifera to Costatrichia; transfer of Betrichia alibrachia and Costatrichia falsa to Leucotrichia; and transfer of Costatrichia fluminensis to Acostatrichia. Additionally, Tupiniquintrichia gen.n. is described to include Peltopsyche maclachlani and Leucotrichia procera. According to our results, crown diversifications of both Alisotrichiini trib.n. (∼80 Ma) and Leucotrichiini sensu n. (∼103 Ma) occurred after complete separation of South America from Africa. Current distributions of most leucotrichiine genera are probably a result of migration from South America towards the north using the proto-Caribbean archipelago (100 to 49 Ma). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:FB6A3385-323D-41AF-B4BE-E19A393A493C.

Journal ArticleDOI
TL;DR: Molecular data support the monophyly of Polyrhachis at the generic level and several of the 13 recognized subgenera, but not all are recovered as monophyletic.
Abstract: Spiny ants ( Polyrhachis Smith) are a hyper-diverse genus of ants distributed throughout the Palaeotropics and the temperate zones of Australia. To investigate the evolution and biogeographic history of the group, we reconstructed their phylogeny and biogeography using molecular data from 209 taxa and seven genes. Our molecular data support the monophyly of Polyrhachis at the generic level and several of the 13 recognized subgenera, but not all are recovered as monophyletic. We found that Cam- pomyrma Wheeler consists of two distinct clades that follow biogeographic affinities, that the boundaries of Hagiomyrma Wheeler are unclear depending on the analysis, that Myrma Billberg might be treated as one or two clades, and that Myrmhopla Forel is not monophyletic, as previously proposed. Our biogeographic ancestral range analyses suggest that the evolution of Polyrhachis originated in South-East Asia, with an age of the modern crown-group Polyrhachis of 58 Ma. Spiny ants dispersed out of South-East Asia to Australia several times, but only once to mainland Africa around 26 Ma.

Journal ArticleDOI
TL;DR: A robust phylogenetic framework is provided that identifies the evolutionary relationships among shifts in egg‐laying strategies, as well as determining the closest pollinating relatives to the cheater species.
Abstract: The interaction between yucca plants and yucca moths has been one of the focal model systems investigated in the study of pollination mutualism and coevolution, especially in terms of understanding the prevention of overexploitation by mutualist partners. Yuccas have the ability to assess the number of eggs placed by pollinators into their ovaries, and can preferentially abort those flowers that would have many moth larvae consuming yucca seeds. Previous phylogenetic research identified a rapid radiation of moth species that corresponded with shifts in the interaction with their host plants. These shifts led to the evolution of moth species that circumvent the egg detection method used by yuccas to limit seed damage. In particular, some pollinator species deposit their eggs so that they are undetectable by the plants, whereas other species are ‘cheaters’ that have lost the ability to pollinate, yet deposit eggs into developing fruit rather than flowers. The evolution of these new species happened so quickly that the phylogeny of the moths has remained unresolved despite repeated attempts with standard Sanger sequencing of mtDNA loci and AFLP marker generation. Here, we use extensive analyses of RAD-seq data to determine the phylogenetic relationships among yucca moth species. The results provide a robust phylogenetic framework that identifies the evolutionary relationships among shifts in egg-laying strategies, as well as determining the closest pollinating relatives to the cheater species. Based on the obtained phylogeny, a shift in egg-laying strategy that avoided the overexploitation regulatory mechanism used by yucca plants was a precursor for the evolution of two species with cheating behaviour.

Journal ArticleDOI
TL;DR: The discovery of the same, supposedly homologous structures in the enigmatic Vogesonymphidae (Permoplectoptera), from the Middle Triassic of Grès à Voltzia in France, is evidence for the parallel coexistence of ancestrally terrestrial and derived aquatic lineages of Ephemerida (Ephemeropterida) in early Mesozoic ecosystems.
Abstract: A new palaeodictyopterid nymph Bizarrea obscura gen.n. et sp.n. (Spilapteridae) and a new adult specimen of Homaloneura cf. dabasinskasi Carpenter are described from the Pennsylvanian (Moscovian) ironstone nodules of Mazon Creek (IL, U.S.A.). Both taxa share enlarged prothoracic lobes (interpreted by some as winglets), heteronomous meso- and metathoracic wing pads or wings, a slender abdomen with pointed laterotergites, and a unique division of the abdominal segments by two transverse sulci. An alternative hypothesis for the placement of Bizarrea within Homoiopteridae is considered on the basis of its large body size and relatively short wing pads. Based on the morphology of the new material, postembryonic development of wing pads in Palaeodictyoptera (Palaeodictyopterida) is reconsidered. Detailed investigation of the abdominal segments, including examination by scanning electron microscopy, reveals the presence of subcircular, sclerotized structures partially covered at the bases of the nymphal laterotergites I–VII, ?VIII. Based on their position and shape, these structures are interpreted as abdominal spiracles, and thus a terrestrial or semiaquatic habitat for these immatures is hypothesized. Moreover, our discovery of the same, supposedly homologous structures in the enigmatic Vogesonymphidae (Permoplectoptera), from the Middle Triassic of Gres a Voltzia in France, is evidence for the parallel coexistence of ancestrally terrestrial and derived aquatic lineages of Ephemerida (Ephemeropterida) in early Mesozoic ecosystems. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:A7270D99-5B48-4EAC-AEB8-EFB8A9F55FBD.