scispace - formally typeset
Search or ask a question

Showing papers in "Technologies (Basel) in 2022"


Journal ArticleDOI
TL;DR: This paper undertakes a comprehensive review of the prospects of implementing VLC for IoT, investigates existing and proposed approaches implemented in the application, and identifies future research directions in the implementation.
Abstract: Visible light communications (VLC) is an emerging and promising concept that is capable of solving the major challenges of 5G and Internet of Things (IoT) communication systems. Moreover, due to the usage of light-emitting diodes (LEDs) in almost every aspect of our daily life VLC is providing massive connectivity for various types of massive IoT communications ranging from machine-to-machine, vehicle-to-infrastructure, infrastructure-to-vehicle, chip-to-chip as well as device-to-device. In this paper, we undertake a comprehensive review of the prospects of implementing VLC for IoT. Moreover, we investigate existing and proposed approaches implemented in the application of VLC for IoT. Additionally, we look at the challenges faced in applying VLC for IoT and offer solutions where applicable. Then, we identify future research directions in the implementation of VLC for IoT.

21 citations


Journal ArticleDOI
TL;DR: The definition and taxonomy of deep transfer learning is reviewed, and the subcategory of network-based DTLs is focused on since it is the most common types ofDTLs that have been applied to various applications in the last decade.
Abstract: Deep learning has been the answer to many machine learning problems during the past two decades. However, it comes with two significant constraints: dependency on extensive labeled data and training costs. Transfer learning in deep learning, known as Deep Transfer Learning (DTL), attempts to reduce such reliance and costs by reusing obtained knowledge from a source data/task in training on a target data/task. Most applied DTL techniques are network/model-based approaches. These methods reduce the dependency of deep learning models on extensive training data and drastically decrease training costs. Moreover, the training cost reduction makes DTL viable on edge devices with limited resources. Like any new advancement, DTL methods have their own limitations, and a successful transfer depends on specific adjustments and strategies for different scenarios. This paper reviews the concept, definition, and taxonomy of deep transfer learning and well-known methods. It investigates the DTL approaches by reviewing applied DTL techniques in the past five years and a couple of experimental analyses of DTLs to discover the best practice for using DTL in different scenarios. Moreover, the limitations of DTLs (catastrophic forgetting dilemma and overly biased pre-trained models) are discussed, along with possible solutions and research trends.

21 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigated the potential of the metaverse in the education world, and they found that the use of metaverse for physical education subjects will be possible in universities only when more specialized technology is grafted into various sports.
Abstract: The metaverse has been evolving the internet-based education represented by e-learning. Metaverse technology is currently being developed as a platform centered on content-based information industries. It can be classified into four categories: augmented reality, lifelogging, mirror worlds, and virtual worlds. Although current research finds that the potential of the metaverse is not small in the education world, and metaverse technology is already being used in the sports world, concrete applications have not been investigated. The main aims of this study, which started with this purpose, can be summarized as follows. The metaverse environment is still in its rudimentary stage, and its use related to physical education subjects is only at the game level. In the future, the utilization of the metaverse by physical education subjects will be possible in universities only when more specialized technology is grafted into various sports. Ultimately, this study contributes to expanding the scope and depth of follow-up research by offering basic data showing the direction of metaverse-based physical education.

20 citations


Journal ArticleDOI
TL;DR: A comparative analysis of multiple machine learning and deep learning models to identify suicidal thoughts from the social media platform Twitter reveals that the RF model can achieve the highest classification score among machine learning algorithms, but training the deep learning classifiers with word embedding increases the performance of ML models.
Abstract: Social networks are essential resources to obtain information about people’s opinions and feelings towards various issues as they share their views with their friends and family. Suicidal ideation detection via online social network analysis has emerged as an essential research topic with significant difficulties in the fields of NLP and psychology in recent years. With the proper exploitation of the information in social media, the complicated early symptoms of suicidal ideations can be discovered and hence, it can save many lives. This study offers a comparative analysis of multiple machine learning and deep learning models to identify suicidal thoughts from the social media platform Twitter. The principal purpose of our research is to achieve better model performance than prior research works to recognize early indications with high accuracy and avoid suicide attempts. We applied text pre-processing and feature extraction approaches such as CountVectorizer and word embedding, and trained several machine learning and deep learning models for such a goal. Experiments were conducted on a dataset of 49,178 instances retrieved from live tweets by 18 suicidal and non-suicidal keywords using Python Tweepy API. Our experimental findings reveal that the RF model can achieve the highest classification score among machine learning algorithms, with an accuracy of 93% and an F1 score of 0.92. However, training the deep learning classifiers with word embedding increases the performance of ML models, where the BiLSTM model reaches an accuracy of 93.6% and a 0.93 F1 score.

19 citations


Journal ArticleDOI
TL;DR: In this paper , machine learning and deep learning algorithms are proposed for predicting traffic flow at an intersection, thus laying the groundwork for adaptive traffic control, either by remote control of traffic lights or by applying an algorithm that adjusts the timing according to the predicted flow.
Abstract: Nowadays, many cities have problems with traffic congestion at certain peak hours, which produces more pollution, noise and stress for citizens. Neural networks (NN) and machine-learning (ML) approaches are increasingly used to solve real-world problems, overcoming analytical and statistical methods, due to their ability to deal with dynamic behavior over time and with a large number of parameters in massive data. In this paper, machine-learning (ML) and deep-learning (DL) algorithms are proposed for predicting traffic flow at an intersection, thus laying the groundwork for adaptive traffic control, either by remote control of traffic lights or by applying an algorithm that adjusts the timing according to the predicted flow. Therefore, this work only focuses on traffic flow prediction. Two public datasets are used to train, validate and test the proposed ML and DL models. The first one contains the number of vehicles sampled every five minutes at six intersections for 56 days using different sensors. For this research, four of the six intersections are used to train the ML and DL models. The Multilayer Perceptron Neural Network (MLP-NN) obtained better results (R-Squared and EV score of 0.93) and took less training time, followed closely by Gradient Boosting then Recurrent Neural Networks (RNNs), with good metrics results but the longer training time, and finally Random Forest, Linear Regression and Stochastic Gradient. All ML and DL algorithms scored good performance metrics, indicating that they are feasible for implementation on smart traffic light controllers.

18 citations


Journal ArticleDOI
TL;DR: The main objective of this case study is to end up with a model which predicts the high yield crop and precision agriculture which incorporates the trending technology, IoT, and Agriculture needy measurements.
Abstract: IoT architectures facilitate us to generate data for large and remote agriculture areas and the same can be utilized for Crop predictions using this machine learning algorithm. Recommendations are based on the following N, P, K, pH, Temperature, Humidity, and Rainfall these attributes decide the crop to be recommended. The data set has 2200 instances and 8 attributes. Nearly 22 different crops are recommended for a different combination of 8 attributes. Using the supervised learning method, the optimum model is attained using selected machine learning algorithms in WEKA. The Machine learning algorithm selected for classifying is multilayer perceptron rules-based classifier JRip, and decision table classifier. The main objective of this case study is to end up with a model which predicts the high yield crop and precision agriculture. The proposed system modeling incorporates the trending technology, IoT, and Agriculture needy measurements. The performance assessed by the selected classifiers is 98.2273%, the Weighted average Receiver Operator Characteristics is 1 with the maximum time taken to build the model being 8.05 s.

17 citations


Journal ArticleDOI
TL;DR: The iPONICS system monitors water quality and greenhouse temperature and humidity, ensuring that crops grow under optimal conditions according to hydroponics guidelines, and is optimized for low power consumption in order to facilitate off-grid operation.
Abstract: This paper presents the design and implementation of iPONICS: an intelligent, low-cost IoT-based control and monitoring system for hydroponics greenhouses. The system is based on three types of sensor nodes. The main (master) node is responsible for controlling the pump, monitoring the quality of the water in the greenhouse and aggregating and transmitting the data from the slave nodes. Environment sensing slave nodes monitor the ambient conditions in the greenhouse and transmit the data to the main node. Security nodes monitor activity (movement in the area). The system monitors water quality and greenhouse temperature and humidity, ensuring that crops grow under optimal conditions according to hydroponics guidelines. Remote monitoring for the greenhouse keepers is facilitated by monitoring these parameters via connecting to a website. An innovative fuzzy inference engine determines the plant irrigation duration. The system is optimized for low power consumption in order to facilitate off-grid operation. Preliminary reliability analysis indicates that the system can tolerate various transient faults without requiring intervention.

14 citations


Journal ArticleDOI
TL;DR: This survey presents the most commonly employed acquisition setups and datasets for multimodal semantic segmentation, and discusses the various techniques to combine color, depth, LiDAR, and other modalities of data at different stages of the learning architectures.
Abstract: The perception of the surrounding environment is a key requirement for autonomous driving systems, yet the computation of an accurate semantic representation of the scene starting from RGB information alone is very challenging. In particular, the lack of geometric information and the strong dependence on weather and illumination conditions introduce critical challenges for approaches tackling this task. For this reason, most autonomous cars exploit a variety of sensors, including color, depth or thermal cameras, LiDARs, and RADARs. How to efficiently combine all these sources of information to compute an accurate semantic description of the scene is still an unsolved task, leading to an active research field. In this survey, we start by presenting the most commonly employed acquisition setups and datasets. Then we review several different deep learning architectures for multimodal semantic segmentation. We will discuss the various techniques to combine color, depth, LiDAR, and other modalities of data at different stages of the learning architectures, and we will show how smart fusion strategies allow us to improve performances with respect to the exploitation of a single source of information.

13 citations


Journal ArticleDOI
TL;DR: The main objective was to assess the performance of land cover and land use analysis using multi-spectral image data and results indicate that, the proposed ensemble learning method outperforms any strong base classifiers with 99.96% classification performance accuracy.
Abstract: Higher dimensionality, Hughes phenomenon, spatial resolution of image data, and presence of mixed pixels are the main challenges in a multi-spectral image classification process. Most of the classical machine learning algorithms suffer from scoring optimal classification performance over multi-spectral image data. In this study, we propose stack-based ensemble-based learning approach to optimize image classification performance. In addition, we integrate the proposed ensemble learning with XGBoost method to further improve its classification accuracy. To conduct the experiment, the Landsat image data has been acquired from Bishoftu town located in the Oromia region of Ethiopia. The current study’s main objective was to assess the performance of land cover and land use analysis using multi-spectral image data. Results from our experiment indicate that, the proposed ensemble learning method outperforms any strong base classifiers with 99.96% classification performance accuracy.

12 citations


Journal ArticleDOI
TL;DR: This work proposes a robust, lightweight network where excellent classification results can diagnose COVID-19 by evaluating chest X-rays, and is the first to propose such an optimized model for a low-power embedded system with increased detection accuracy.
Abstract: At the end of 2019, a severe public health threat named coronavirus disease (COVID-19) spread rapidly worldwide. After two years, this coronavirus still spreads at a fast rate. Due to its rapid spread, the immediate and rapid diagnosis of COVID-19 is of utmost importance. In the global fight against this virus, chest X-rays are essential in evaluating infected patients. Thus, various technologies that enable rapid detection of COVID-19 can offer high detection accuracy to health professionals to make the right decisions. The latest emerging deep-learning (DL) technology enhances the power of medical imaging tools by providing high-performance classifiers in X-ray detection, and thus various researchers are trying to use it with limited success. Here, we propose a robust, lightweight network where excellent classification results can diagnose COVID-19 by evaluating chest X-rays. The experimental results showed that the modified architecture of the model we propose achieved very high classification performance in terms of accuracy, precision, recall, and f1-score for four classes (COVID-19, normal, viral pneumonia and lung opacity) of 21.165 chest X-ray images, and at the same time meeting real-time constraints, in a low-power embedded system. Finally, our work is the first to propose such an optimized model for a low-power embedded system with increased detection accuracy.

12 citations


Journal ArticleDOI
TL;DR: This work introduces a novel approach that gradually maps and learns the personality of a human, by conceiving and tracking the individual's emotional variations throughout their interaction, and proposes a handy tool for HRI scenarios, where robot’s activity adaptation is needed for enhanced interaction performance and safety.
Abstract: One’s internal state is mainly communicated through nonverbal cues, such as facial expressions, gestures and tone of voice, which in turn shape the corresponding emotional state. Hence, emotions can be effectively used, in the long term, to form an opinion of an individual’s overall personality. The latter can be capitalized on in many human–robot interaction (HRI) scenarios, such as in the case of an assisted-living robotic platform, where a human’s mood may entail the adaptation of a robot’s actions. To that end, we introduce a novel approach that gradually maps and learns the personality of a human, by conceiving and tracking the individual’s emotional variations throughout their interaction. The proposed system extracts the facial landmarks of the subject, which are used to train a suitably designed deep recurrent neural network architecture. The above architecture is responsible for estimating the two continuous coefficients of emotion, i.e., arousal and valence, following the broadly known Russell’s model. Finally, a user-friendly dashboard is created, presenting both the momentary and the long-term fluctuations of a subject’s emotional state. Therefore, we propose a handy tool for HRI scenarios, where robot’s activity adaptation is needed for enhanced interaction performance and safety.

Journal ArticleDOI
TL;DR: A reliable state-of-the-art obstacle detection algorithm is proposed for a mobile application that will analyze in real time the data received by an external sonar device and decide the need to audibly warn the blind person about near field obstacles.
Abstract: A reliable state-of-the-art obstacle detection algorithm is proposed for a mobile application that will analyze in real time the data received by an external sonar device and decide the need to audibly warn the blind person about near field obstacles. The proposed algorithm can equip an orientation and navigation device that allows the blind person to walk safely autonomously outdoors. The smartphone application and the microelectronic external device will serve as a wearable that will help the safe outdoor navigation and guidance of blind people. The external device will collect information using an ultrasonic sensor and a GPS module. Its main objective is to detect the existence of obstacles in the path of the user and to provide information, through oral instructions, about the distance at which it is located, its size and its potential motion and to advise how it could be avoided. Subsequently, the blind can feel more confident, detecting obstacles via hearing before sensing them with the walking cane, including hazardous obstacles that cannot be sensed at the ground level. Besides presenting the micro-servo-motor ultrasonic obstacle detection algorithm, the paper also presents the external microelectronic device integrating the sonar module, the impulse noise filtering implementation, the power budget of the sonar module and the system evaluation. The presented work is an integral part of a state-of-the-art outdoor blind navigation smartphone application implemented in the MANTO project.

Journal ArticleDOI
TL;DR: The commonly employed mathematical functions in constitutive models, such as the strain hardening/softening model, strain-rate hardening factor, and temperature-softening factor are reviewed, and their prediction characteristics are illustrated.
Abstract: The commonly employed mathematical functions in constitutive models, such as the strain hardening/softening model, strain-rate hardening factor, and temperature-softening factor, are reviewed, and their prediction characteristics are illustrated. The results may assist one (i) to better understand the behavior of the constitutive model that employs a given mathematical function; (ii) to find the reason for deficiencies, if any, of an existing constitutive model; (iii) to avoid employing an inappropriate mathematical function in future constitutive models. This study subsequently illustrates the flow stress description characteristics of twelve constitutive models at wide strain rates (from 10−6 to 106 s−1) and temperatures (from absolute to melting temperatures) using the material parameters presented in the original studies. The phenomenological models considered herein include the Johnson–Cook, Shin–Kim, Lin–Wagoner, Sung–Kim–Wagoner, Khan–Huang–Liang, and Rusinek–Klepaczko models. The physically based models considered are the Zerilli–Armstrong, Voyiadjis–Abed, Testa et al., Steinberg et al., Preston–Tonks–Wallace, and Follansbee–Kocks models. The illustrations of the behavior of the foregoing constitutive models may be informative in (i) selecting an appropriate constitutive model; (ii) understanding and interpreting simulation results obtained using a given constitutive model; (iii) finding a reference material to develop future constitutive models.

Journal ArticleDOI
TL;DR: In this article , the properties of Al and Mg based sustainable metal matrix composites with special emphasis on green reinforcements and processing methods are presented, and the recent trend also explores various industrial by-products and agricultural wastes as green reinforcements.
Abstract: Growing concerns like depleting mineral resources, increased materials wastage, and structural light-weighting requirements due to emission control regulations drive the development of sustainable metal matrix composites. Al and Mg based alloys with relatively lower melting temperatures qualify for recycling applications and hence are considered as the matrix material for developing sustainable composites. The recent trend also explores various industrial by-products and agricultural wastes as green reinforcements, and this article presents insights on the properties of Al and Mg based sustainable metal matrix composites with special emphasis on green reinforcements and processing methods.

Journal ArticleDOI
TL;DR: In this paper , the adaptive control of a high-DoF assistive robot arm using a low-DOF input device is investigated in a simulated virtual reality environment with 39 non-disabled participants.
Abstract: Robot arms are one of many assistive technologies used by people with motor impairments. Assistive robot arms can allow people to perform activities of daily living (ADL) involving grasping and manipulating objects in their environment without the assistance of caregivers. Suitable input devices (e.g., joysticks) mostly have two Degrees of Freedom (DoF), while most assistive robot arms have six or more. This results in time-consuming and cognitively demanding mode switches to change the mapping of DoFs to control the robot. One option to decrease the difficulty of controlling a high-DoF assistive robot arm using a low-DoF input device is to assign different combinations of movement-DoFs to the device’s input DoFs depending on the current situation (adaptive control). To explore this method of control, we designed two adaptive control methods for a realistic virtual 3D environment. We evaluated our methods against a commonly used non-adaptive control method that requires the user to switch controls manually. This was conducted in a simulated remote study that used Virtual Reality and involved 39 non-disabled participants. Our results show that the number of mode switches necessary to complete a simple pick-and-place task decreases significantly when using an adaptive control type. In contrast, the task completion time and workload stay the same. A thematic analysis of qualitative feedback of our participants suggests that a longer period of training could further improve the performance of adaptive control methods.

Journal ArticleDOI
TL;DR: In this article , a new gravity-balanced upper-limb exoskeleton suited for rehabilitation applications and designed with the main objective of reducing the cost of the components and materials is presented.
Abstract: In recent decades, many researchers have focused on the design and development of exoskeletons. Several strategies have been proposed to develop increasingly more efficient and biomimetic mechanisms. However, existing exoskeletons tend to be expensive and only available for a few people. This paper introduces a new gravity-balanced upper-limb exoskeleton suited for rehabilitation applications and designed with the main objective of reducing the cost of the components and materials. Regarding mechanics, the proposed design significantly reduces the motor torque requirements, because a high cost is usually associated with high-torque actuation. Regarding the electronics, we aim to exploit the microprocessor peripherals to obtain parallel and real-time execution of communication and control tasks without relying on expensive RTOSs. Regarding sensing, we avoid the use of expensive force sensors. Advanced control and rehabilitation features are implemented, and an intuitive user interface is developed. To experimentally validate the functionality of the proposed exoskeleton, a rehabilitation exercise in the form of a pick-and-place task is considered. Experimentally, peak torques are reduced by 89% for the shoulder and by 84% for the elbow.

Journal ArticleDOI
TL;DR: In this article , a formal methodology is presented for selecting strategic national investments in FOSH development to improve both national security and global safety, and hardware is identified that could undercut imports and exports from a target criminal country.
Abstract: Free and open-source hardware (FOSH) development has been shown to increase innovation and reduce economic costs. This article reviews the opportunity to use FOSH as a sanction to undercut imports and exports from a target criminal country. A formal methodology is presented for selecting strategic national investments in FOSH development to improve both national security and global safety. In this methodology, first the target country that is threatening national security or safety is identified. Next, the top imports from the target country as well as potentially other importing countries (allies) are quantified. Hardware is identified that could undercut imports/exports from the target country. Finally, methods to support the FOSH development are enumerated to support production in a commons-based peer production strategy. To demonstrate how this theoretical method works in practice, it is applied as a case study to a current criminal military aggressor nation, who is also a fossil-fuel exporter. The results show that there are numerous existing FOSH and opportunities to develop new FOSH for energy conservation and renewable energy to reduce fossil-fuel-energy demand. Widespread deployment would reduce the concomitant pollution, human health impacts, and environmental desecration as well as cut financing of military operations.

Peer ReviewDOI
TL;DR: The study uses a systematic literature review (SLR) technique and complete substantive literature is reviewed to find out the constructs and themes in the existing literature to propose a secure framework for the Internet of Things.
Abstract: The stimulus to carry out this research was to identify and propose a secure framework for the Internet of Things (IoT). Due to the massive accessibility and interconnection of IoT devices, systems are at risk of being exploited by hackers. Therefore, there is a need to find an advanced security framework that covers data security, data confidentiality, and data integrity issues. The study uses a systematic literature review (SLR) technique and complete substantive literature is reviewed to find out the constructs and themes in the existing literature. We performed it in four steps, which were inclusion, eligibility, screening, and identification. We reviewed around 568 articles from well-reputable journals, and after exclusion, 260 articles and 54 reports were analyzed. We performed an analysis using MAXQDA in which the nodes and themes were first identified. After the classification, a qualitative model was generated using MAXQDA. The proposed model is supported by the literature so it will be useful for the IT managers, developers, and the users of IoT.

Journal ArticleDOI
TL;DR: In this paper , the authors proposed a framework of active and healthy ageing through the integration of a broad spectrum of digital solutions into an open Pan-European technological platform in the context of the SHAPES project, an EU-funded innovation action.
Abstract: As people age, they are more likely to develop multiple chronic diseases and experience a decline in some of their physical and cognitive functions, leading to the decrease in their ability to live independently. Innovative technology-based interventions tailored to older adults’ functional levels and focused on healthy lifestyles are considered imperative. This work proposed a framework of active and healthy ageing through the integration of a broad spectrum of digital solutions into an open Pan-European technological platform in the context of the SHAPES project, an EU-funded innovation action. In conclusion, the SHAPES project can potentially engage older adults in a holistic technological ecosystem and, therefore, facilitate the maintenance of a high-quality standard of life.

Journal ArticleDOI
TL;DR: In this paper , an alternative approach for wire electrical discharge machining Al2O3 in the water-based dielectric medium using copper tape of 40 µm thickness and TiO2 powder suspension was proposed for the first time.
Abstract: Aluminum-based ceramics are used in industry to produce cutting tools that resist extreme mechanical and thermal load conditions during the machining of Ni-based and high-entropy alloys. There is wide field of application also in the aerospace industry. Microtexturing of cutting ceramics reduces contact loads and wear of cutting tools. However, most of the published works are related to the electrical discharge machining of alumina in hydrocarbons, which creates risks for the personnel and equipment due to the formation of chemically unstable dielectric carbides (methanide Al3C4 and acetylenide Al2(C2)3). An alternative approach for wire electrical discharge machining Al2O3 in the water-based dielectric medium using copper tape of 40 µm thickness and TiO2 powder suspension was proposed for the first time. The performance was evaluated by calculating the material removal rate for various combinations of pulse frequency and TiO2 powder concentration. The obtained kerf of 54.16 ± 0.05 µm in depth demonstrated an increasing efficiency of more than 1.5 times with the closest analogs for the workpiece thickness up to 5 mm in height. The comparison of the performance (0.0083–0.0084 mm3/s) with the closest analogs shows that the results may correlate with the electrical properties of the assisting materials.

Journal ArticleDOI
TL;DR: In this article , three-layer structures including skin, fat, and muscle are used for the designs, then antennas are placed in the chest, neck, head, and hand of different human voxels to compare antennas' performance.
Abstract: Our objective is to design triple-band implantable antennas with wide bandwidths and appropriate sizes for biomedical applications. The targeted design frequencies are 400 MHz, 2.4 GHz, and the new Wi-Fi band of 5.7 GHz. Three triple-band antennas with bandwidth improvements are presented to insure all-time data connection. The proposed triple-band implantable antennas benefit from combining long-distance data transfer at lower frequency bands and a higher effective bandwidth, and high-speed communications at higher frequency bands, which will have flexibility for a variety of applications. A comprehensive explanation of the design procedure to achieve multiple-band implantable antennas is provided. Furthermore, miniaturization techniques are utilized to design antennas in compact sizes suitable for biomedical applications. In this paper, three-layer structures including skin, fat, and muscle are used for the designs, then antennas are placed in the chest, neck, head, and hand of different human voxels to compare antennas’ performance. Additionally, normal and overweight human effects on antenna performance were compared. Antennas have 2 to 6 dBi directivity for telemetry usage, and they are designed to satisfy the absorption limit for the human body to keep the Specific Absorption Rate (SAR) averaged over 1 g of tissue less than 1.6 W/kg and over 10 g of tissue less than 2 W/kg, according to IEEE standard. The antennas include fractal, meandered, and comb types with sizes of 1.4 mm × 10 mm × 10 mm, 3.04 mm × 10 mm × 17.25 mm, and 1.4 mm × 12 mm × 12 mm, respectively. The designed antenna showed an impedance bandwidth of 53 MHz to 120 MHz, 90 MHz to 320 MHz, and 300 MHz to 1200 MHz at the three bands. The meandered antenna was selected for validation of simulations, and its S parameters were measured in the equivalent liquid phantom of body tissues.

Journal ArticleDOI
TL;DR: In this article , a multi-level Improved Simplified Swarm Optimization (MLiSSO) method was proposed to solve the pricing strategy problem for dual-channel supply chain.
Abstract: With the evolution of the Internet and the introduction of third-party platforms, a diversified supply chain has gradually emerged. In contrast to the traditional single sales channel, companies can also increase their revenue by selling through multiple channels, such as dual-channel sales: adding a sales channel for direct sales through online third-party platforms. However, due to the complexity of the supply chain structure, previous studies have rarely discussed and analyzed the capital-constrained dual-channel supply chain model, which is more relevant to the actual situation. To solve more complex and realistic supply chain decision problems, this paper uses the concept of game theory to describe the pricing negotiation procedures among the capital-constrained manufacturers and other parties in the dual-channel supply chain by applying the Stackelberg game theory to describe the supply chain structure as a hierarchical multi-level mathematical model to solve the optimal pricing strategy for different financing options to achieve the common benefit of the supply chain. In this study, we propose a Multi-level Improved Simplified Swarm Optimization (MLiSSO) method, which uses the improved, simplified swarm optimization (iSSO) for the Multi-level Programming Problem (MLPP). It is applied to this pricing strategy model of the supply chain and experiments with three related MLPPs in the past studies to verify the effectiveness of the method. The results show that the MLiSSO algorithm is effective, qualitative, and stable and can be used to solve the pricing strategy problem for supply chain models; furthermore, the algorithm can also be applied to other MLPPs.

Journal ArticleDOI
TL;DR: This paper aims to present a signal processing analysis of electroencephalographic (EEG) signals among different feature extraction techniques to train selected classification algorithms to classify signals related to motor movements and suggests the applicability of this approach to different scenarios, such as implementing robotic prostheses.
Abstract: In brain–computer interfaces (BCIs), it is crucial to process brain signals to improve the accuracy of the classification of motor movements. Machine learning (ML) algorithms such as artificial neural networks (ANNs), linear discriminant analysis (LDA), decision tree (D.T.), K-nearest neighbor (KNN), naive Bayes (N.B.), and support vector machine (SVM) have made significant progress in classification issues. This paper aims to present a signal processing analysis of electroencephalographic (EEG) signals among different feature extraction techniques to train selected classification algorithms to classify signals related to motor movements. The motor movements considered are related to the left hand, right hand, both fists, feet, and relaxation, making this a multiclass problem. In this study, nine ML algorithms were trained with a dataset created by the feature extraction of EEG signals.The EEG signals of 30 Physionet subjects were used to create a dataset related to movement. We used electrodes C3, C1, CZ, C2, and C4 according to the standard 10-10 placement. Then, we extracted the epochs of the EEG signals and applied tone, amplitude levels, and statistical techniques to obtain the set of features. LabVIEW™2015 version custom applications were used for reading the EEG signals; for channel selection, noise filtering, band selection, and feature extraction operations; and for creating the dataset. MATLAB 2021a was used for training, testing, and evaluating the performance metrics of the ML algorithms. In this study, the model of Medium-ANN achieved the best performance, with an AUC average of 0.9998, Cohen’s Kappa coefficient of 0.9552, a Matthews correlation coefficient of 0.9819, and a loss of 0.0147. These findings suggest the applicability of our approach to different scenarios, such as implementing robotic prostheses, where the use of superficial features is an acceptable option when resources are limited, as in embedded systems or edge computing devices.

Journal ArticleDOI
TL;DR: How the input from low-cost sensors, specifically, passive camera sensors installed in a real manufacturing workplace, and smartwatches used by the workers can provide useful feedback on the workers’ conditions and can yield key indicators for the prevention of work-related musculo-skeletal disorders (WMSD) and physical fatigue is demonstrated.
Abstract: The detection and prevention of workers’ body straining postures and other stressing conditions within the work environment, supports establishing occupational safety and promoting well being and sustainability at work. Developed methods towards this aim typically rely on combining highly ergonomic workplaces and expensive monitoring mechanisms including wearable devices. In this work, we demonstrate how the input from low-cost sensors, specifically, passive camera sensors installed in a real manufacturing workplace, and smartwatches used by the workers can provide useful feedback on the workers’ conditions and can yield key indicators for the prevention of work-related musculo-skeletal disorders (WMSD) and physical fatigue. To this end, we study the ability to assess the risk for physical strain of workers online during work activities based on the classification of ergonomically sub-optimal working postures using visual information, the correlation and fusion of these estimations with synchronous worker heart rate data, as well as the prediction of near-future heart rate using deep learning-based techniques. Moreover, a new multi-modal dataset of video and heart rate data captured in a real manufacturing workplace during car door assembly activities is introduced. The experimental results show the efficiency of the proposed approach that exceeds 70% of classification rate based on the F1 score measure using a set of over 300 annotated video clips of real line workers during work activities. In addition a time lagging correlation between the estimated ergonomic risks for physical strain and high heart rate was assessed using a larger dataset of synchronous visual and heart rate data sequences. The statistical analysis revealed that imposing increased strain to body parts will results in an increase to the heart rate after 100–120 s. This finding is used to improve the short term forecasting of worker’s cardiovascular activity for the next 10 to 30 s by fusing the heart rate data with the estimated ergonomic risks for physical strain and ultimately to train better predictive models for worker fatigue.

Journal ArticleDOI
TL;DR: In this article , the authors introduce the components of Digital Twins and give emphasis on the steps that are required to transform obtained data into meaningful information that will be used in a Digital Twin.
Abstract: Zero-defect manufacturing and flexibility in production lines is driven from accurate Digital Twins (DT) which monitor, understand, and predict the behavior of a manufacturing process under different conditions while also adapting to them by deciding the right course of action in time intervals relevant to the captured phenomenon. During the exploration of the alternative approaches for the development of process twins, significant efforts should be made for the selection of acquisition devices and signal-processing techniques to extract meaningful information from the studied process. As such, in Industry 4.0 era, machine tools are equipped with embedded sensors that give feedback related to the process efficiency and machine health, while additional sensors are installed to capture process-related phenomena, feeding simulation tools and decision-making algorithms. Although the maturity level of some process mechanisms facilitates the representation of the physical world with the aid of physics-based models, data-driven models are proposed for complex phenomena and non-mature processes. This paper introduces the components of Digital Twin and gives emphasis on the steps that are required to transform obtained data into meaningful information that will be used in a Digital Twin. The introduced steps are identified in a case study from the milling process.

Journal ArticleDOI
TL;DR: The quantitative and qualitative results indicate that the state-of-the-art hand pose estimators can be greatly improved with the aid of the training data generated by these GAN-based data augmentation methods.
Abstract: Deep learning solutions for hand pose estimation are now very reliant on comprehensive datasets covering diverse camera perspectives, lighting conditions, shapes, and pose variations. While acquiring such datasets is a challenging task, several studies circumvent this problem by exploiting synthetic data, but this does not guarantee that they will work well in real situations mainly due to the gap between the distribution of synthetic and real data. One recent popular solution to the domain shift problem is learning the mapping function between different domains through generative adversarial networks. In this study, we present a comprehensive study on effective hand pose estimation approaches, which are comprised of the leveraged generative adversarial network (GAN), providing a comprehensive training dataset with different modalities. Benefiting from GAN, these algorithms can augment data to a variety of hand shapes and poses where data manipulation is intuitively controlled and greatly realistic. Next, we present related hand pose datasets and performance comparison of some of these methods for the hand pose estimation problem. The quantitative and qualitative results indicate that the state-of-the-art hand pose estimators can be greatly improved with the aid of the training data generated by these GAN-based data augmentation methods. These methods are able to beat the baseline approaches with better visual quality and higher values in most of the metrics (PCK and ME) on both the STB and NYU datasets. Finally, in conclusion, the limitation of the current methods and future directions are discussed.

Journal ArticleDOI
TL;DR: In this paper , the authors provide insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials, including batteries, supercapacitors, and soft robotics using soft materials.
Abstract: Polymer composites are becoming an important class of materials for a diversified range of industrial applications due to their unique characteristics and natural and synthetic reinforcements. Traditional methods of polymer composite fabrication require machining, manual labor, and increased costs. Therefore, 3D printing technologies have come to the forefront of scientific, industrial, and public attention for customized manufacturing of composite parts having a high degree of control over design, processing parameters, and time. However, poor interfacial adhesion between 3D printed layers can lead to material failure, and therefore, researchers are trying to improve material functionality and extend material lifetime with the addition of reinforcements and self-healing capability. This review provides insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials. Moreover, 3D printing of flexible energy-storage devices (FESD), including batteries, supercapacitors, and soft robotics using soft materials (polymers), is discussed as well as the application of 3D printing as a platform for bioengineering and earth science applications by using a variety of polymer materials, all of which have great potential for improving future conditions for humanity and planet Earth.

Journal ArticleDOI
TL;DR: The performance of different self-supervised approaches along with a supervised method are investigated for automated cognitive assessment of children performing ATEC tasks and show that the supervised learning approach performance decreases as the training set becomes smaller, whereas the self- supervised methods maintain their performance by taking advantage of unlabeled data.
Abstract: Physical activities, according to the embodied cognition theory, are an important manifestation of cognitive functions. As a result, in this paper, the Activate Test of Embodied Cognition (ATEC) system is proposed to assess various cognitive measures. It consists of physical exercises with different variations and difficulty levels designed to provide assessment of executive and motor functions. This work focuses on obtaining human activity representation from recorded videos of ATEC tasks in order to automatically assess embodied cognition performance. A self-supervised approach is employed in this work that can exploit a small set of annotated data to obtain an effective human activity representation. The performance of different self-supervised approaches along with a supervised method are investigated for automated cognitive assessment of children performing ATEC tasks. The results show that the supervised learning approach performance decreases as the training set becomes smaller, whereas the self-supervised methods maintain their performance by taking advantage of unlabeled data.

Journal ArticleDOI
TL;DR: This paper attempts to design an algorithm that is simple enough to be implemented on a small field programmable gate array board while simultaneously efficientenough to be used in practical scenarios, and examines its behavior across different sizes.
Abstract: Benes/Clos networks constitute a particularly important part of interconnection networks and have been used in numerous areas, such as multi-processor systems, data centers and on-chip networks. They have also attracted great interest in the field of optical communications due to the increasing popularity of optical switches based on these architectures. There are numerous algorithms aimed at routing these types of networks, with varying degrees of utility. Linear algorithms, such as Sun Tsu and Opferman, were historically the first attempt to standardize the routing procedure of this types of networks. They require matrix-based calculations, which are very demanding in terms of resources and in some cases involve backtracking, which impairs their efficiency. Parallel solutions, such as Lee’s algorithm, were introduced later and provide a different answer that satisfy the requirements of high-performance networks. They are, however, extremely complex and demand even more resources. In both cases, hardware implementations reflect their algorithmic characteristics. In this paper, we attempt to design an algorithm that is simple enough to be implemented on a small field programmable gate array board while simultaneously efficient enough to be used in practical scenarios. The design itself is of a generic nature; therefore, its behavior across different sizes (8 × 8, 16 × 16, 32 × 32, 64 × 64) is examined. The platform of implementation is a medium range FPGA specifically selected to represent the average hardware prototyping device. In the end, an overview of the algorithm’s imprint on the device is presented alongside other approaches, which include both hard and soft computing techniques.

Journal ArticleDOI
TL;DR: In this paper , the authors analyze the evolution of basic sculpture techniques (carving, lost-wax casting and 3D scanning/printing), and their importance as a culture footprint.
Abstract: The creation of innovative tools, objects and artifacts that introduce abstract ideas in the real world is a necessary step for the evolution process and characterize the creative capacity of civilization. Sculpture is based on the available technology for its creation process and is strongly related to the level of technological sophistication of each era. This paper analyzes the evolution of basic sculpture techniques (carving, lost-wax casting and 3D scanning/printing), and their importance as a culture footprint. It also presents and evaluates the added creative capacities of each technological step and the different methods of 3D scanning/printing concerning sculpture. It is also an attempt to define the term “material poetics”, which is connected to sculpture artifacts. We conclude that 3D scanning/printing is an important sign of civilization, although artifacts lose a part of material poetics with additive manufacturing. Subsequently, there are various causes of the destruction of sculptures, leaving a hole in the history of art. Finally, this paper showcases the importance of 3D scanning/printing in salvaging cultural heritage, as it has radically altered the way we “backup” objects.