scispace - formally typeset
Journal ArticleDOI

A high-performance cathode for the next generation of solid-oxide fuel cells

Zongping Shao, +1 more
- 09 Sep 2004 - 
- Vol. 431, Iss: 7005, pp 170-173
Reads0
Chats0
TLDR
BSCF is presented as a new cathode material for reduced-temperature SOFC operation and demonstrated that BSCF is ideally suited to ‘single-chamber’ fuel-cell operation, where anode and cathode reactions take place within the same physical chamber.
Abstract
Fuel cells directly and efficiently convert chemical energy to electrical energy. Of the various fuel cell types, solid-oxide fuel cells (SOFCs) combine the benefits of environmentally benign power generation with fuel flexibility. However, the necessity for high operating temperatures (800–1,000 °C) has resulted in high costs and materials compatibility challenges. As a consequence, significant effort has been devoted to the development of intermediate-temperature (500–700 °C) SOFCs. A key obstacle to reduced-temperature operation of SOFCs is the poor activity of traditional cathode materials for electrochemical reduction of oxygen in this temperature regime2. Here we present Ba_(0.5_Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-delta) (BSCF) as a new cathode material for reduced-temperature SOFC operation. BSCF, incorporated into a thin-film doped ceria fuel cell, exhibits high power densities (1,010 mW cm^(-2) and 402 mW cm^(-2) at 600 °C and 500 °C, respectively) when operated with humidified hydrogen as the fuel and air as the cathode gas. We further demonstrate that BSCF is ideally suited to 'single-chamber' fuel-cell operation, where anode and cathode reactions take place within the same physical chamber. The high power output of BSCF cathodes results from the high rate of oxygen diffusion through the material. By enabling operation at reduced temperatures, BSCF cathodes may result in widespread practical implementation of SOFCs.

read more

Citations
More filters
Journal ArticleDOI

A short review of cathode poisoning and corrosion in solid oxide fuel cell

TL;DR: In this article, the impacts of certain poisoning and corrosions on SOFC cathode are introduced, and the latest results of durability research on the corrosion resistant properties of cathode under CO2, humidity, Cr and Si-containing conditions are reviewed.
Journal ArticleDOI

Efficient Electro-Catalysts for Enhancing Surface Activity and Stability of SOFC Cathodes

TL;DR: In this paper, the authors proposed to enhance the cathode activity of solid oxide fuel cells (SOFCs) to reduce the resistance to oxygen reduction reaction (ORR), which contributes the most to energy loss in SOFCs.
Journal ArticleDOI

Carbon-Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts

TL;DR: This review article guides the rational design and synthesis of high-performance, metal-free, and noble-metal-free carbon-rich electrocatalysts and eventually advances the rapid development of water-splitting electrolyzers and fuel cells toward practical applications.
Journal ArticleDOI

High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells

TL;DR: In this article, the authors proposed a structure with high symmetry and extraordinary electrochemical performance for Bi0.5Sr 0.5FeO3-δ, which is capable of competing effectively with the current Co-based cathode benchmark with additional advantages of lower thermal expansion and cost.
References
More filters
Journal ArticleDOI

Materials for fuel-cell technologies

TL;DR: Recent progress in the search and development of innovative alternative materials in the development of fuel-cell stack is summarized.
Journal ArticleDOI

Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C

TL;DR: In this article, the authors evaluated thermodynamic and electrical conductivity data to select the most appropriate electrolyte composition for IT-SOFC operation at 500°C and found that the Gd 3+ ion is the preferred dopant, compared to Sm 3+ and Y 3+, at this temperature.
Journal ArticleDOI

Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane

TL;DR: In this article, a combined citrate-EDTA complexing method was used for the preparation of SCFO and Ba0.2O3-delta (BSCFO) oxides, and the results of O-2-TPD and XRD showed that the introduction of barium into SCFO could effectively suppress the oxidation of Co3+ and Fe3+ to higher valence states of Co4 and Fe4+ in the lattice and stabilize the perovskite structure under lower oxygen partial pressures.
Journal ArticleDOI

Recent Advances in Materials for Fuel Cells

TL;DR: In this paper, material requirements for SOFC and PEMFC stacks, together with an introductory section on materials technology for reformers, are discussed, and it is concluded that the introduction of alternative materials/processes that would enable SOFC stacks to operate at 150-200°C, and IT-SOFC stacks at 500-700°C would have a major impact on the successful commercialization of fuel cell technology.
Journal ArticleDOI

A low-operating-temperature solid oxide fuel cell in hydrocarbon-Air mixtures

TL;DR: The performance of a single-chamber solid oxide fuel cell was studied using a ceria-basedsolid electrolyte at temperatures below 773 kelvin, where the solid electrolyte functioned as a purely ionic conductor.
Related Papers (5)