scispace - formally typeset
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TLDR
In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract
THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

read more

Citations
More filters
Journal ArticleDOI

A Computational Investigation of Organic Dyes for Dye-Sensitized Solar Cells: Benchmark, Strategies, and Open Issues

TL;DR: In this paper, a comprehensive theoretical study on the electronic absorption spectra of a representative group of organic dyes (L0, D4, D5, C217, and JK2) employed in dye-sensitized solar cell devices is reported.
Journal ArticleDOI

Recent Advances in Conjugated Polyelectrolytes for Emerging Optoelectronic Applications

TL;DR: In this paper, a review summarizes recent advances in the science and applications of conjugated polyelectrolytes (CPEs), with an emphasis on direct visual sensing, cellular imaging, and the fabrication of optoelectronic devices.
Journal ArticleDOI

High Efficiency Dye-Sensitized Solar Cells Based on Hierarchically Structured Nanotubes

TL;DR: Dye-sensitized solar cells (DSSCs) based on hierarchically structured TiO(2) nanotubes prepared by a facile combination of two-step electrochemical anodization with a hydrothermal process exhibited remarkable performance.
Journal ArticleDOI

Materials Pushing the Application Limits of Wire Grid Polarizers further into the Deep Ultraviolet Spectral Range

TL;DR: In this article, it is shown that to achieve high performance ultraviolet WGPs a material with large absolute value of the complex permittivity and extinction coefficient at the wavelength of interest has to be utilized.
Journal ArticleDOI

Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells

TL;DR: This work provides a meaningful perspective that the ferroelectric effect (if it really exists) should be paid special attention in the optimization of perovskite solar cells and proves that prolonged stepwise measurement is an effective way to evaluate the real efficiency of perovsky solar cells.
References
More filters
Journal ArticleDOI

Electrochemical Photolysis of Water at a Semiconductor Electrode

TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Journal ArticleDOI

Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation

TL;DR: In this article, the dynamics of charge recombination following electron injection from the excited state of RuL{sub 3} into the conduction band of the semiconductor were examined under potentiostatic control of the electric field within the space charge layer of the membrane.
Journal ArticleDOI

The impact of semiconductors on the concepts of electrochemistry

TL;DR: In this article, it was realized that semiconductor electrodes behave differently in many respects and offer new insights into the role played by the electronic properties of a solid in its electrochemical reactivity.
Journal ArticleDOI

Electrochemistry and photochemistry of MoS2 layer crystals. I

TL;DR: In this article, the chemical and photochemical behavior of MoS 2 -van der Waals surfaces in contact with an aqueous electrolyte has been investigated by means of electrochemical techniques.
Related Papers (5)