scispace - formally typeset
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TLDR
In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract
THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

read more

Citations
More filters
Journal ArticleDOI

Industrial applications of nanoparticles

TL;DR: This tutorial review starts with a brief analysis on what makes nanoparticles attractive to chemical product design and then moves to rapidly emerging applications in the chemical industry and discusses future research directions.
Journal ArticleDOI

Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells

TL;DR: In this article, the authors review the status of the understanding of dye-sensitized solar cells (DSSC), emphasizing clear physical models with predictive power, and discuss them in terms of the chemical and electrical potential distributions in the device.
Journal ArticleDOI

Review: Dye sensitized solar cells based on natural photosensitizers

TL;DR: The performance of dye-sensitized solar cells is mainly based on the dye as a sensitizer as mentioned in this paper, which has become a viable alternative to expensive and rare organic sensitizers because of its low cost, easy attainability, abundance in supply materials and no environment threat.
Journal ArticleDOI

Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors

TL;DR: In this article, the authors present an up-to-date review of metal oxide materials research for gas sensors application, due to the great research effort in the field it could not cover all the interesting works reported, the ones that, according to the authors, are going to contribute to this field's further development were selected and described.
References
More filters
Journal ArticleDOI

Electrochemical Photolysis of Water at a Semiconductor Electrode

TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Journal ArticleDOI

Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation

TL;DR: In this article, the dynamics of charge recombination following electron injection from the excited state of RuL{sub 3} into the conduction band of the semiconductor were examined under potentiostatic control of the electric field within the space charge layer of the membrane.
Journal ArticleDOI

The impact of semiconductors on the concepts of electrochemistry

TL;DR: In this article, it was realized that semiconductor electrodes behave differently in many respects and offer new insights into the role played by the electronic properties of a solid in its electrochemical reactivity.
Journal ArticleDOI

Electrochemistry and photochemistry of MoS2 layer crystals. I

TL;DR: In this article, the chemical and photochemical behavior of MoS 2 -van der Waals surfaces in contact with an aqueous electrolyte has been investigated by means of electrochemical techniques.
Related Papers (5)