scispace - formally typeset
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TLDR
In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract
THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

read more

Citations
More filters
Journal ArticleDOI

Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications

Didier Robert
- 15 Apr 2007 - 
TL;DR: In this article, the authors reviewed the recent progress of the photocatalytic efficiency of coupled semi-conductors, comparing their efficiency with that of TiO2 alone, and proposed an interparticle electron transfer process by coupling two semiconductors with different redox energy levels to increase the charge separation for corresponding conduction and valence bands.
Journal ArticleDOI

On the Metric of Charge Transfer Molecular Excitations: A Simple Chemical Descriptor.

TL;DR: A new index is defined, called Δr, based on the charge centroids of the orbitals involved in the excitations and can be interpreted in term of the hole-electron distance, which shows ability in discriminating between short and long-range excitations.
Journal ArticleDOI

Podlike N-Doped Carbon Nanotubes Encapsulating FeNi Alloy Nanoparticles: High-Performance Counter Electrode Materials for Dye-Sensitized Solar Cells

TL;DR: The Pod(N)-FeNi composite shows promise as an environmentally friendly, low-cost, and highly efficient CE material for DSSCs.
Journal ArticleDOI

Controlled Synthesis and Energy Applications of One‐Dimensional Conducting Polymer Nanostructures: An Overview

TL;DR: In this article, the authors summarized the synthetic strategies for various 1D conducting polymer nanostructures of conjugated polypyrrole (PPy), polyaniline (PANI), polythiophene (PTh), poly(p-phenylenevinylene) (PPV) and derivatives thereof.
References
More filters
Journal ArticleDOI

Electrochemical Photolysis of Water at a Semiconductor Electrode

TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Journal ArticleDOI

Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation

TL;DR: In this article, the dynamics of charge recombination following electron injection from the excited state of RuL{sub 3} into the conduction band of the semiconductor were examined under potentiostatic control of the electric field within the space charge layer of the membrane.
Journal ArticleDOI

The impact of semiconductors on the concepts of electrochemistry

TL;DR: In this article, it was realized that semiconductor electrodes behave differently in many respects and offer new insights into the role played by the electronic properties of a solid in its electrochemical reactivity.
Journal ArticleDOI

Electrochemistry and photochemistry of MoS2 layer crystals. I

TL;DR: In this article, the chemical and photochemical behavior of MoS 2 -van der Waals surfaces in contact with an aqueous electrolyte has been investigated by means of electrochemical techniques.
Related Papers (5)