scispace - formally typeset
Open AccessJournal ArticleDOI

A quantitative description of membrane current and its application to conduction and excitation in nerve

A. L. Hodgkin, +1 more
- 28 Aug 1952 - 
- Vol. 117, Iss: 4, pp 500-544
Reads0
Chats0
TLDR
This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre by putting them into mathematical form and showing that they will account for conduction and excitation in quantitative terms.
Abstract
This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkinet al, 1952,J Physiol116, 424–448; Hodgkin and Huxley, 1952,J Physiol116, 449–566) Its general object is to discuss the results of the preceding papers (Section 1), to put them into mathematical form (Section 2) and to show that they will account for conduction and excitation in quantitative terms (Sections 3–6)

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A Mathematical Evaluation of the Core Conductor Model

TL;DR: The conclusion of this study is that the linear core conductor model is a good approximation for internal but not external parameters.
Journal ArticleDOI

A parallel solver for reaction-diffusion systems in computational electrocardiology

TL;DR: In this work, a parallel three-dimensional solver for numerical simulations in computational electrocardiology is introduced and studied, and structured isoparametric Q1 finite elements in space and a semi-implicit adaptive method in time are employed.
Journal ArticleDOI

Enhanced Na+ Channel Intermediate Inactivation in Brugada Syndrome

TL;DR: The hypothesis that Brugada syndrome is caused, in part, by functionally reduced Na(+) current in the myocardium due to an increased proportion of Na(+ channels that enter the I:(M) state is supported.
Journal ArticleDOI

GABA-activated chloride channels in secretory nerve endings.

TL;DR: The patch-clamp technique is used to show that the predominant inhibitory presynaptic neurotransmitter, gamma-aminobutyric acid (GABA), activates a GABAA receptor and gates a chloride channel in the membranes of peptidergic nerve terminals of the posterior pituitary.
References
More filters
Journal ArticleDOI

Potential, impedance, and rectification in membranes

TL;DR: A theoretical picture has been presented based on the use of the general kinetic equations for ion motion under the influence of diffusion and electrical forces and on a consideration of possible membrane structures that shows qualitative agreement with the rectification properties and very good agreementwith the membrane potential data.
Journal ArticleDOI

Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo

TL;DR: The identity of the ions which carry the various phases of the membrane current is chiefly concerned with sodium ions, since there is much evidence that the rising phase of the action potential is caused by the entry of these ions.
Journal ArticleDOI

Measurement of current-voltage relations in the membrane of the giant axon of Loligo.

TL;DR: The importance of ionic movements in excitable tissues has been emphasized by a number of recent experiments which are consistent with the theory that nervous conduction depends on a specific increase in permeability which allows sodium ions to move from the more concentrated solution outside a nerve fibre to the more dilute solution inside it.
Journal ArticleDOI

The dual effect of membrane potential on sodium conductance in the giant axon of Loligo

TL;DR: This paper contains a further account of the electrical properties of the giant axon of Loligo and deals with the 'inactivation' process which gradually reduces sodium permeability after it has undergone the initial rise associated with depolarization.