scispace - formally typeset
Open AccessJournal ArticleDOI

A quantitative description of membrane current and its application to conduction and excitation in nerve

A. L. Hodgkin, +1 more
- 28 Aug 1952 - 
- Vol. 117, Iss: 4, pp 500-544
Reads0
Chats0
TLDR
This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre by putting them into mathematical form and showing that they will account for conduction and excitation in quantitative terms.
Abstract
This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkinet al, 1952,J Physiol116, 424–448; Hodgkin and Huxley, 1952,J Physiol116, 449–566) Its general object is to discuss the results of the preceding papers (Section 1), to put them into mathematical form (Section 2) and to show that they will account for conduction and excitation in quantitative terms (Sections 3–6)

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mechanisms of physiological and epileptic HFO generation.

TL;DR: The role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions are considered.
Book

Computational Maps in the Visual Cortex

TL;DR: This paper describes the development of Maps and Connections and the construction of LISSOM, a Computational Map Model of V1, and the role of plasticity, Hierarchical Model in this development.
Journal ArticleDOI

Electrophysiological Effects of Remodeling Cardiac Gap Junctions and Cell Size Experimental and Model Studies of Normal Cardiac Growth

TL;DR: The results suggest that in pathological substrates that are arrhythmogenic, maintaining cell size during remodeling of gap junctions is important in sustaining a maximum rate of depolarization.
Journal ArticleDOI

Synaptic Background Activity Enhances the Responsiveness of Neocortical Pyramidal Neurons

TL;DR: It is shown that responsiveness is enhanced if voltage fluctuations are taken into account; in this case the model can produce responses to inputs that would normally be subthreshold, and it is predicted that background activity provides the necessary drive for detecting events that would Normally be undetectable.
References
More filters
Journal ArticleDOI

Potential, impedance, and rectification in membranes

TL;DR: A theoretical picture has been presented based on the use of the general kinetic equations for ion motion under the influence of diffusion and electrical forces and on a consideration of possible membrane structures that shows qualitative agreement with the rectification properties and very good agreementwith the membrane potential data.
Journal ArticleDOI

Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo

TL;DR: The identity of the ions which carry the various phases of the membrane current is chiefly concerned with sodium ions, since there is much evidence that the rising phase of the action potential is caused by the entry of these ions.
Journal ArticleDOI

Measurement of current-voltage relations in the membrane of the giant axon of Loligo.

TL;DR: The importance of ionic movements in excitable tissues has been emphasized by a number of recent experiments which are consistent with the theory that nervous conduction depends on a specific increase in permeability which allows sodium ions to move from the more concentrated solution outside a nerve fibre to the more dilute solution inside it.
Journal ArticleDOI

The dual effect of membrane potential on sodium conductance in the giant axon of Loligo

TL;DR: This paper contains a further account of the electrical properties of the giant axon of Loligo and deals with the 'inactivation' process which gradually reduces sodium permeability after it has undergone the initial rise associated with depolarization.