scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Physics B in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors present a review of quantum computation with neutral atom qubits and examine Rydberg mediated gate protocols and fidelity for two-and multi-qubit interactions.
Abstract: We present a review of quantum computation with neutral atom qubits. After an overview of architectural options and approaches to preparing large qubit arrays we examine Rydberg mediated gate protocols and fidelity for two- and multi-qubit interactions. Quantum simulation and Rydberg dressing are alternatives to circuit based quantum computing for exploring many body quantum dynamics. We review the properties of the dressing interaction and provide a quantitative figure of merit for the complexity of the coherent dynamics that can be accessed with dressing. We conclude with a summary of the current status and an outlook for future progress.

486 citations


Journal ArticleDOI
TL;DR: In this article, a review of recent advances in attosecond science is reported and important applications are discussed, with a brief presentation of various techniques that can be employed for the generation and diagnosis of sub-femtosecond pulses.
Abstract: Attosecond science offers formidable tools for the investigation of electronic processes at the heart of important physical processes in atomic, molecular and solid-state physics. In the last 15 years impressive advances have been obtained from both the experimental and theoretical points of view. Attosecond pulses, in the form of isolated pulses or of trains of pulses, are now routinely available in various laboratories. In this review recent advances in attosecond science are reported and important applications are discussed. After a brief presentation of various techniques that can be employed for the generation and diagnosis of sub-femtosecond pulses, various applications are reported in atomic, molecular and condensed-matter physics.

351 citations


Journal ArticleDOI
TL;DR: By mapping the strong interaction between Rydberg excitations in ultra-cold atomic ensembles onto single photons via electromagnetically induced transparency, it is now possible to realize a medium which exhibits a strong optical nonlinearity at the level of individual photons.
Abstract: By mapping the strong interaction between Rydberg excitations in ultra-cold atomic ensembles onto single photons via electromagnetically induced transparency, it is now possible to realize a medium which exhibits a strong optical nonlinearity at the level of individual photons. We review the theoretical concepts and the experimental state-of-the-art of this exciting new field, and discuss first applications in the field of all-optical quantum information processing.

197 citations


Journal ArticleDOI
TL;DR: In this paper, a review of variational MCHF and Dirac-Hartree-Fock (MCDHF) is presented, where the multireference single and double process for generating expansions and the systematic procedure for monitoring convergence are discussed.
Abstract: Multiconfiguration wave function expansions combined with configuration interaction methods are a method of choice for complex atoms where atomic state functions are expanded in a basis of configuration state functions. Combined with a variational method such as the multiconfiguration Hartree-Fock (MCHF) or multiconfiguration Dirac-Hartree-Fock (MCDHF), the associated set of radial functions can be optimized for the levels of interest. The present review updates the variational MCHF theory to include MCDHF, describes the multireference single and double process for generating expansions and the systematic procedure of a computational scheme for monitoring convergence. It focuses on the calculations of energies and wave functions from which other atomic properties can be predicted such as transition rates, hyperfine structures and isotope shifts, for example.

190 citations


Journal ArticleDOI
TL;DR: In this paper, a review summarizes experimental works performed over the last decade by several groups on the manipulation of a few individual interacting Rydberg atoms, with potential applications to quantum metrology, quantum simulation and quantum information.
Abstract: This review summarizes experimental works performed over the last decade by several groups on the manipulation of a few individual interacting Rydberg atoms. These studies establish arrays of single Rydberg atoms as a promising platform for quantum-state engineering, with potential applications to quantum metrology, quantum simulation and quantum information.

184 citations


Journal ArticleDOI
TL;DR: In this paper, a primer on the Floquet theory of periodically time-dependent quantum systems is provided, and it is shown how to apply this framework for computing the quasienergy band structure governing the dynamics of ultracold atoms in driven optical cosine lattices.
Abstract: A primer on the Floquet theory of periodically time-dependent quantum systems is provided, and it is shown how to apply this framework for computing the quasienergy band structure governing the dynamics of ultracold atoms in driven optical cosine lattices. Such systems are viewed here as spatially and temporally periodic structures living in an extended Hilbert space, giving rise to spatio-temporal Bloch waves whose dispersion relations can be manipulated at will by exploiting ac-Stark shifts and multiphoton resonances. The elements required for numerical calculations are introduced in a tutorial manner, and some example calculations are discussed in detail, thereby illustrating future prospects of Floquet engineering.

179 citations


Journal ArticleDOI
TL;DR: This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research and urges authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.
Abstract: The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.

140 citations


Journal ArticleDOI
TL;DR: The Linac Coherent Light Source (LCLS) as discussed by the authors is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density (HED) physics regime.
Abstract: The matter in extreme conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump–probe measurements for studying the physical properties of matter in the high-energy density (HED) physics regime. This instrument combines the world's brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the first experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering measurements on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. These complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness x-rays resolves the ionic interactions at atomic (Angstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. These studies have demonstrated our ability to measure fundamental thermodynamic properties that determine the state of matter in the HED physics regime.

128 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser.
Abstract: Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrodinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption experiments in more complex systems.

112 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the recent advances in the study of strongly interacting systems of dipolar molecules is presented, with a brief discussion of the future prospects for studies of strongly-interacting dipolar molecular systems.
Abstract: This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole-dipole interactions. Ultracold samples of dipolar molecules with long-range interactions offer a unique platform for quantum simulations and the study of correlated many-body physics. We provide an introduction to the physics of dipolar quantum gases, both electric and magnetic, and summarize the multipronged efforts to bring dipolar molecules into the quantum regime. We discuss in detail the recent experimental progress in realizing and studying strongly interacting systems of polar molecules trapped in optical lattices, with particular emphasis on the study of interacting spin systems and non-equilibrium quantum magnetism. Finally, we conclude with a brief discussion of the future prospects for studies of strongly interacting dipolar molecules.

110 citations


Journal ArticleDOI
TL;DR: This viewpoint relates to an article by B A Malomed, D Mihalache, F Wise, and L Torner as mentioned in this paper, which was published as part of a series of viewpoints celebrating 50 of the most influential papers published in the Journal of Physics series, which is celebrating its 50th anniversary.
Abstract: This viewpoint relates to an article by B A Malomed, D Mihalache, F Wise, and L Torner (2005 J. Opt. B: Quantum Semiclass. Opt. 7 R53–R72) and was published as part of a series of viewpoints celebrating 50 of the most influential papers published in the Journal of Physics series, which is celebrating its 50th anniversary.


Journal ArticleDOI
TL;DR: In this paper, the authors acknowledge the support from the European Research Council under the ERC grants no. 637756 STARLIGHT, no. 227355 ELYCHE and no. 290853 XCHEM, LASERLABEUROPE (grant agreement no. 284464, European Commissions Seventh Framework Programme), European COST Action CM1204 XLIC, the Ministerio de Ciencia e Innovacion project FIS2013-42002-R, European grants MC-ITN CORINF and MC-RG ATTOTREND
Abstract: We acknowledge the support from the European Research Council under the ERC grants no. 637756 STARLIGHT, no. 227355 ELYCHE and no. 290853 XCHEM, LASERLABEUROPE (grant agreement no. 284464, European Commissions Seventh Framework Programme), European COST Action CM1204 XLIC, the Ministerio de Ciencia e Innovacion project FIS2013-42002-R, European grants MC-ITN CORINF and MC-RG ATTOTREND 268284, UKs Science and Technology Facilities Council Laser Loan Scheme, the Engineering and Physical Sciences Research Council (grant EP/J007048/ 1), the Leverhulme Trust (grant RPG-2012-735), and the Northern Ireland Department of Employment and Learning

Journal ArticleDOI
TL;DR: In this article, Gaussian Process (GP) regression is used to construct multi-dimensional potential energy surfaces (PESs) for polyatomic molecules, using an example of the molecule N4.
Abstract: We explore the efficiency of a statistical learning technique based on Gaussian process (GP) regression as an efficient non-parametric method for constructing multi-dimensional potential energy surfaces (PESs) for polyatomic molecules. Using an example of the molecule N4, we show that a realistic GP model of the six-dimensional PES can be constructed with only 240 potential energy points. We construct a series of the GP models and illustrate the accuracy of the resulting surfaces as a function of the number of ab initio points. We show that the GP model based on ~1500 potential energy points achieves the same level of accuracy as the conventional regression fits based on 16 421 points. The GP model of the PES requires no fitting of ab initio data with analytical functions and can be readily extended to surfaces of higher dimensions.

Journal ArticleDOI
TL;DR: In this paper, a dual-species Bose-Einstein condensate (BEC) of Na-23 and Rb-87 atoms was realized and observed its immiscibility.
Abstract: We have realized a dual-species Bose-Einstein condensate (BEC) of Na-23 and Rb-87 atoms and observed its immiscibility. Because of the favorable background intra-and inter-species scattering lengths, stable condensates can be obtained via efficient evaporative cooling and sympathetic cooling without the need for fine tuning of the interactions. Our system thus provides a clean platform for studying inter-species interactions-driven effects in superfluid mixtures. With a Feshbach resonance, we have successfully created double BECs with largely tunable inter-species interactions and studied the miscible-immiscible phase transition.

Journal ArticleDOI
TL;DR: A combination of static and oscillating magnetic fields can be used to "dress" atoms with radio-frequency (RF), or microwave, radiation as mentioned in this paper, and the spatial variation of these fields can also be used for creating an enormous variety of traps for ultra-cold atoms and quantum gases.
Abstract: A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau–Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the possibility to extract useful dynamical and structural information from the measurement of the HHG emission, a technique termed high harmonic generation spectroscopy (HHGS).
Abstract: In this review we will discuss the topic of high order harmonic generation (HHG) from samples of organic and bio-molecules. The possibility to extract useful dynamical and structural information from the measurement of the HHG emission, a technique termed high harmonic generation spectroscopy (HHGS), will be the special focus of our discussions. We will begin by introducing the salient facts of HHG from atoms and simple molecules and explaining the principles behind HHGS. Next the technical difficulties associated with HHG from samples of organic molecules and biomolecules, principally the low sample density and the low ionization potential, will be examined. Then we will present some recent experiments where HHG spectra from samples of these molecules have been measured and discuss what has been learned from these measurements. Finally we will look at the future prospects for HHG spectroscopy of organic molecules, discussing some of the technical and in principle limits of the technique and methods that may ameliorate these limits.

Journal ArticleDOI
TL;DR: In this article, a review describes recent progress in developing methods for directly solving the effective Schrodinger equation for open-shell diatomic molecules, with a focus on molecules containing a transtion metal.
Abstract: The spectra (rotational, rotation–vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell (1Σ) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbed spectra of even greater complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an ab initio approach; these areas are ultracold chemistry and the astrophysics of 'cool' stars, brown dwarfs and most recently extrasolar planets. However, the complex electronic structure of these molecules combined with the accuracy requirements of high-resolution spectroscopy render such an approach particularly challenging. This review describes recent progress in developing methods for directly solving the effective Schrodinger equation for open-shell diatomic molecules, with a focus on molecules containing a transtion metal. It considers four aspects of the problem: (i) the electronic structure problem; (ii) non-perturbative treatments of the curve couplings; (iii) the solution of the nuclear motion Schrodinger equation; (iv) the generation of accurate electric dipole transition intensities. Examples of applications are used to illustrate these issues.

Journal ArticleDOI
TL;DR: In this article, a two-stage buffer gas beam source was used for laser slowing of CaF molecules down to the capture velocity of a magneto-optical trap (MOT) for molecules.
Abstract: Laser slowing of CaF molecules down to the capture velocity of a magneto-optical trap (MOT) for molecules is achieved. Starting from a two-stage buffer gas beam source, we apply frequency-broadened "white-light" slowing and observe approximately 6x10^4 CaF molecules with velocities near 10\,m/s. CaF is a candidate for collisional studies in the mK regime. This work represents a significant step towards magneto-optical trapping of CaF.

Journal ArticleDOI
TL;DR: Covariance mapping has been used in many areas of science and technology, such as inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics) as discussed by the authors.
Abstract: Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.

Journal ArticleDOI
TL;DR: In this article, the process of high harmonic generation in molecules using a bicircular laser field was investigated, and it was shown that molecules offer a very robust framework for the production of circularly polarized harmonics, provided their symmetry is compatible with that of the laser field.
Abstract: We investigate the process of circularly polarized high harmonic generation in molecules using a bicircular laser field. In this context, we show that molecules offer a very robust framework for the production of circularly polarized harmonics, provided their symmetry is compatible with that of the laser field. Using a discrete time-dependent symmetry analysis, we show how all the features (harmonic order and polarization) of spectra can be explained and predicted. The symmetry analysis is generic and can easily be applied to other target and/or field configurations.

Journal ArticleDOI
TL;DR: In this article, the Wigner delay for single-photon valence ionization was investigated from a scattering theory perspective, and made use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide.
Abstract: Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide. We present energy and angle-resolved maps of the Wigner delay time for single-photon valence ionization, and discuss the possibilities for experimental measurements.

Journal ArticleDOI
TL;DR: In this paper, the role of knockout in the energetic processing of molecules and clusters is discussed in detail, and the competition between knockout and thermally driven fragmentation is discussed and compared with simulations and quantum chemical calculations.
Abstract: When molecules are excited by photons or energetic particles, they will cool through the emission of photons, electrons, or by fragmenting. Such processes are often thermal as they occur after the excitation energy has been redistributed across all degrees-of-freedom in the system. Collisions with atoms or ions may also lead to ultrafast fragmentation in Rutherford-like scattering processes, where one or several atoms can literally be knocked out of the molecule by the incoming projectile before the energy can be completely redistributed. The resulting fragmentation pathways can in such knockout processes be very different from those in thermal processes.This thesis covers extensive studies of collisions between ions/atoms and isolated Polycyclic Aromatic Hydrocarbon (PAH) molecules, isolated fullerene molecules, or clusters of these. The high stabilities and distinct fragmentation channels make these types of molecules excellent test cases for characterizing knockout-driven fragmentation and the reactions that these processes can lead to. I will present experimental measurements for a wide range of energies and compare them with my own molecular dynamics simulations and quantum chemical calculations. In this thesis, I present an in-depth study of the role of knockout in the energetic processing of molecules and clusters. The competition between knockout and thermally driven fragmentation is discussed in detail.Knockout-driven fragmentation is shown to result in exotic fragments that are far more reactive than the intact parent molecules or fragments from thermal processes. When such reactive species are formed within molecular clusters efficient molecular growth can take place on sub-picosecond timescales. The cluster environments are crucial here because they protect the newly formed molecules by absorbing excess energy. This is a possible pathway for the growth of large PAHs, fullerenes, and similar carbonaceous complexes found in, for instance, the interstellar medium.

Journal ArticleDOI
Abstract: We report the generation of coherent water-window soft x-ray harmonics in a neon-filled semi-infinite gas cell driven by a femtosecond multi-mJ mid-infrared optical parametric chirped-pulse amplification (OPCPA) system at a 1 kHz repetition rate. The cutoff energy was extended to ~450 eV with a 2.1 μm driver wavelength and a photon flux of photons/s/1% bandwidth was obtained at 350 eV. A comparable photon flux of photons/s/1% bandwidth was observed at the nitrogen K-edge of 410 eV. This is the first demonstration of water-window harmonic generation up to the nitrogen K-edge from a kHz OPCPA system. Finally, this system is suitable for time-resolved soft x-ray near-edge absorption spectroscopy. Further scaling of the driving pulse's energy and repetition rate is feasible due to the availability of high-power picosecond Yb-doped pump laser technologies, thereby enabling ultrafast, tabletop water-window x-ray imaging.


Journal ArticleDOI
TL;DR: In this article, the authors presented a new instrument for ultrafast electron diffraction and imaging, which merges the high peak current and relativistic electron energies of radio-frequency guns, with the high average electron flux of static electron microscopes, extending the beam parameter space achievable with relativists by many orders of magnitude.
Abstract: We present the design and optimization of a new instrument for ultrafast electron diffraction and imaging. The proposed instrument merges the high peak current and relativistic electron energies of radio-frequency guns, with the high average electron flux of static electron microscopes, extending the beam parameter space achievable with relativistic electrons by many orders of magnitude. An immediate consequence of this work is a broader range of accessible science by using electron probes, enabling techniques as femtosecond nano-diffraction and coherent diffraction imaging, and paving the way to direct observation of ultrafast dynamics in complex and isolated samples, from nanocrystals, to nano/micro droplets and organic molecules.

Journal ArticleDOI
TL;DR: A gas-phase x-ray scattering experiment capable of capturing molecular motions with atomic spatial resolution and femtosecond time resolution was described in this article, where a cell diffractometer balances sample flow with gas density and laser focusing conditions.
Abstract: We describe a gas-phase x-ray scattering experiment capable of capturing molecular motions with atomic spatial resolution and femtosecond time resolution. X-ray free electron lasers can deliver intense x-ray pulses of ultrashort duration, making them suitable to study ultrafast chemical reaction dynamics in an ultraviolet pump, x-ray probe scheme. A cell diffractometer balances sample flow with gas density and laser focusing conditions to provide adequate scattering vector resolution with high signal intensity and near-uniform excitation probability. Images from a pixel-array x-ray detector, spatially and electronically calibrated, allow for detection of scattering intensity changes below 1%. First experiments on the ring-opening reaction of 1,3-cyclohexadiene to form 1, 3, 5-hexatriene show a rapid initial reaction on an 80 fs time scale.

Journal ArticleDOI
TL;DR: In this paper, the authors review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections, including femtosecond lasers and free electron x-ray lasers.
Abstract: Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

Journal ArticleDOI
TL;DR: In this article, the effects of a long-range dipolar interaction between these droplets are analyzed. But the results are restricted to the case of a weakly dominant Bose-Einstein interaction.
Abstract: The simultaneous presence of two competing inter-particle interactions can lead to the emergence of new phenomena in a many-body system. Among others, such effects are expected in dipolar Bose–Einstein condensates, subject to dipole–dipole interaction and short-range repulsion. Magnetic quantum gases and in particular Dysprosium gases, offering a comparable short-range contact and a long-range dipolar interaction energy, remarkably exhibit such emergent phenomena. In addition an effective cancellation of mean-field effects of the two interactions results in a pronounced importance of quantum-mechanical beyond mean-field effects. For a weakly dominant dipolar interaction the striking consequence is the existence of a new state of matter equilibrated by the balance between weak mean-field attraction and beyond mean-field repulsion. Though exemplified here in the case of dipolar Bose gases, this state of matter should appear also with other microscopic interactions types, provided a competition results in an effective cancellation of the total mean-field. The macroscopic state takes the form of so-called quantum droplets. We present the effects of a long-range dipolar interaction between these droplets.

Journal ArticleDOI
TL;DR: In this paper, the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states.
Abstract: The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.