scispace - formally typeset
Journal ArticleDOI

Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites

TLDR
In this paper, a review of recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory, is presented.
Abstract
Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices.

read more

Citations
More filters
Journal ArticleDOI

Electron-phonon relaxation at the Au/WSe2 interface is significantly accelerated by a Ti adhesion layer: time-domain ab initio analysis.

TL;DR: In this article , the authors used ab initio time-dependent density functional theory combined with non-adiabatic molecular dynamics to study how the hot electron and hole relaxation rates change on incorporating a thin Ti adhesion layer at the Au/WSe2 interface.
Journal ArticleDOI

Computational perspective on recent advances in quantum electronics: from electron quantum optics to nanoelectronic devices and systems

TL;DR: In this article , a review of computational aspects of a representative selection of recent research in quantum electronics is highlighted where a major focus is on the electron's wave nature, and the review is thus a testament to the increasingly towering importance of computational methods for advancing the expanding field of quantum electronics.
Journal ArticleDOI

Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Inverse Fast Fourier Transform.

TL;DR: A straightforward methodology is developed that can extend ab initio quality NAMD to nanoseconds and thousands of atoms and is demonstrated with charge carrier trapping and relaxation in hybrid organic- inorganic and all-inorganic metal halide perovskites that exhibit complex dynamics and are actively studied for optoelectronic applications.
Journal ArticleDOI

Interplay of structural fluctuations and charge carrier dynamics is key for high performance of hybrid lead halide perovskites

TL;DR: In this article , the interaction of organic cation rotation and inorganic lattice fluctuation maintains the high performance of hybrid organic-inorganic perovskites, which is a type of perovskipper.
References
More filters
Journal ArticleDOI

Ab initio molecular dynamics for liquid metals.

TL;DR: In this paper, the authors present an ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local density approximation.
Journal ArticleDOI

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Journal ArticleDOI

Hybrid functionals based on a screened Coulomb potential

TL;DR: In this paper, a new hybrid density functional based on a screened Coulomb potential for the exchange interaction is proposed, which enables fast and accurate hybrid calculations, even of usually difficult metallic systems.
Journal ArticleDOI

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells

TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Related Papers (5)