scispace - formally typeset
Journal ArticleDOI

Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts.

TLDR
A comprehensive review of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts is presented in this paper, mainly focusing on hydrogenation reactions.
Abstract
Zeolites possessing large specific surface areas, ordered micropores, and adjustable acidity/basicity have emerged as ideal supports to immobilize metal species with small sizes and high dispersities. In recent years, the zeolite-supported metal catalysts have been widely used in diverse catalytic processes, showing excellent activity, superior thermal/hydrothermal stability, and unique shape-selectivity. In this review, a comprehensive summary of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts are presented for important heterogeneous catalytic processes in the last five years, mainly including 1) the hydrogenation reactions (e.g., CO/CO2 hydrogenation, hydrogenation of unsaturated compounds, and hydrogenation of nitrogenous compounds); 2) dehydrogenation reactions (e.g., alkane dehydrogenation and dehydrogenation of chemical hydrogen storage materials); 3) oxidation reactions (e.g., CO oxidation, methane oxidation, and alkene epoxidation); and 4) other reactions (e.g., hydroisomerization reaction and selective catalytic reduction of NOx with ammonia reaction). Finally, some current limitations and future perspectives on the challenge and opportunity for this subject are pointed out. It is believed that this review will inspire more innovative research on the synthesis and catalysis of zeolite-supported metal catalysts and promote their future developments to meet the emerging demands for practical applications.

read more

Citations
More filters
Journal ArticleDOI

Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis.

TL;DR: The metal-in-zeolite composites as mentioned in this paper have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties.
Journal ArticleDOI

Single Atom Catalysts for Selective Methane Oxidation to Oxygenates.

TL;DR: In this article , a review of single atom catalysts (SACs) for the selective oxidation of CH4 to C1-2 liquid oxygenates is presented, where the chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective.
Journal ArticleDOI

Enhanced Catalytic Performance through In Situ Encapsulation of Ultrafine Ru Clusters within a High-Aluminum Zeolite

TL;DR: In this paper , Ru@H-ZSM-5 showed an enhanced activity and stability for the crucial hydrodeoxygenation (HDO) of phenol to cyclohexane in biomass valorization.
Journal ArticleDOI

Synergistic catalysis of Ru single-atoms and zeolite boosts high-efficiency hydrogen storage

TL;DR: In this paper , a Ru single atom supported on *BEA zeolite catalyst (Ru(Na)/Beta), with the assistance of hydrogen spillover, was used to accelerate the hydrogenation of N-ethyl carbazole (NEC), N-propylcarbazole(NPC), and 2-methylindole (2-MID).
Journal ArticleDOI

Unveiling Secondary-Ion-Promoted Catalytic Properties of Cu-SSZ-13 Zeolites for Selective Catalytic Reduction of NO<i><sub>x</sub></i>

TL;DR: In this paper , a series of Cu-Sm-SSZ-13 zeolites have been prepared by ion-exchanging Sm ions followed by Cu ions, which exhibit superior NH3-SCR performance.
References
More filters
Journal ArticleDOI

Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis.

TL;DR: It is found that the silanol nests enable the rare-earth elements to exist as single atomic species with a substantially higher chemical potential compared with that of the bulk oxide, making it possible for them to diffuse onto Pt through the H2 reduction route.
Journal ArticleDOI

Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates

TL;DR: Zn–ZrO2/SSZ-13 catalyzed direct conversion of syngas into lower olefins via methanol/DME intermediates with 77% selectivity at 29% CO conversion.
Journal ArticleDOI

Subnanometer Bimetallic Platinum-Zinc Clusters in Zeolites for Propane Dehydrogenation

TL;DR: A ligand-protected direct hydrogen reduction method for encapsulating subnanometer bimetallic Pt-Zn clusters inside silicalite-1 (S-1) zeolite, which represents the best performance s to date for PDH conversions, promising their practical industrial applications.
Journal ArticleDOI

n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites

TL;DR: In this article, three series of catalysts with different levels of proximity between Pt and acid sites were prepared, with different parameters, the balance between the metal and acid functions and their degree of intimacy.
Journal ArticleDOI

Stable complete methane oxidation over palladium based zeolite catalysts.

TL;DR: A material based on palladium and hierarchical zeolite with fully sodium-exchanged acid sites is designed, which improves the support stability and prevents steam-induced palladium sintering under reaction conditions by confining the metal within theZeolite.
Related Papers (5)
Trending Questions (1)
What are the potential applications of zeolite and CuO heterostructures in catalysis?

Zeolite-supported CuO catalysts have shown promise in diverse catalytic processes like CO/CO2 hydrogenation, oxidation reactions, and selective catalytic reduction of NOx with ammonia, as highlighted in the paper.