scispace - formally typeset
Journal ArticleDOI

An easily accessible donor-π-acceptor-conjugated small molecule from a 4,8-dialkoxybenzo[1,2-b:4,5-b']dithiophene unit for efficient solution-processed organic solar cells.

TLDR
A new donor-acceptor-conjugated organic small molecule, BDT(TBT)(2), comprised of benzo[1,2-b:4,5-b']dithiophene and 2,1,3-benzothiadiazole units was designed and synthesized and generated a power conversion efficiency (PCE) of 1.18%.
Abstract
A new donor-acceptor-conjugated organic small molecule, BDT(TBT)(2), comprised of benzo[1,2-b:4,5-b']dithiophene and 2,1,3-benzothiadiazole units was designed and synthesized. The small molecule BDT(TBT)(2) in its thin film showed an absorption band in the range of 300-700 nm with an absorption edge at 650 nm and an optical band gap of 1.90 eV. As estimated from the cyclic voltammetry measurements, the HOMO and LUMO energy levels of BDT(TBT)(2) were -5.44 and -3.37 eV, respectively. The spin-coated thin film of BDT(TBT)(2) exhibited p-channel output characteristics with a hole mobility of 2.7 × 10(-6). BDT(TBT)(2), when explored as an electron-donor material in solution-processed bulk-heterojunction organic solar cells in conjunction with a PC(71)BM acceptor with an active layer thickness of 50-55 nm, generated a power conversion efficiency (PCE) of 1.18%. A more impressive PCE of ~2.9% with a short-circuit current density (J(sc)) of 7.94 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.89 V was achieved when the active layer of the cell was annealed at higher temperature (~180 °C).

read more

Citations
More filters
Journal ArticleDOI

Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

TL;DR: This review offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship.
Journal ArticleDOI

Benzo[1,2-b:4,5-b′]dithiophene (BDT)-based small molecules for solution processed organic solar cells

TL;DR: In this paper, the progress made in the field of small molecules containing BDT units for solution-processed organic photovoltaic cells is reviewed, and insights into several important aspects regarding the design and synthesis of BDT based small molecules are also included.
Journal ArticleDOI

Thiophene-based push–pull chromophores for small molecule organic solar cells (SMOSCs)

TL;DR: In this paper, the authors provide the scientific community with both general and in depth information on the structure-property relationships related to the photocurrent efficiencies comprising detailed I/V characteristics.
Journal ArticleDOI

Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells

TL;DR: In this article, the impact of thermal annealing on open circuit voltage, short circuit current and fill factor was investigated for bulk heterojunction solar cell devices using a newly designed solution-processable small molecule (DRDTSBDTT).
References
More filters
Journal ArticleDOI

Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency

TL;DR: In this article, the authors presented a review of several organic photovoltaics (OPV) technologies, including conjugated polymers with high-electron-affinity molecules like C60 (as in the bulk-heterojunction solar cell).
Journal ArticleDOI

Bulk heterojunction solar cells with internal quantum efficiency approaching 100

TL;DR: In this paper, a polymer solar cell based on a bulk hetereojunction design with an internal quantum efficiency of over 90% across the visible spectrum (425 nm to 575 nm) is reported.
Journal ArticleDOI

Polymer solar cells

TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Journal ArticleDOI

For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%

TL;DR: The past success in organic light-emitting diodes provides scientists with confidence that organic photovoltaic devices will be a vital alternate to the inorganic counterpart, and the easiness of the fabrication holds the promise of very low-cost manufacturing process.
Journal ArticleDOI

Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols

TL;DR: By incorporating a few volume per cent of alkanedithiols in the solution used to spin-cast films comprising a low-bandgap polymer and a fullerene derivative, the power-conversion efficiency of photovoltaic cells is increased from 2.8% to 5.5% through altering the bulk heterojunction morphology.
Related Papers (5)