scispace - formally typeset
Journal ArticleDOI

An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes

TLDR
It is shown that few-walled carbon nanotubes, following outer wall exfoliation via oxidation and high-temperature reaction with ammonia, can act as an oxygen reduction reaction electrocatalyst in both acidic and alkaline solutions.
Abstract
Oxygen reduction reaction catalysts based on precious metals such as platinum or its alloys are routinely used in fuel cells because of their high activity. Carbon-supported materials containing metals such as iron or cobalt as well as nitrogen impurities have been proposed to increase scalability and reduce costs, but these alternatives usually suffer from low activity and/or gradual deactivation during use. Here, we show that few-walled carbon nanotubes, following outer wall exfoliation via oxidation and high-temperature reaction with ammonia, can act as an oxygen reduction reaction electrocatalyst in both acidic and alkaline solutions. Under a unique oxidation condition, the outer walls of the few-walled carbon nanotubes are partially unzipped, creating nanoscale sheets of graphene attached to the inner tubes. The graphene sheets contain extremely small amounts of irons originated from nanotube growth seeds, and nitrogen impurities, which facilitate the formation of catalytic sites and boost the activity of the catalyst, as revealed by atomic-scale microscopy and electron energy loss spectroscopy. Whereas the graphene sheets formed from the unzipped part of the outer wall of the nanotubes are responsible for the catalytic activity, the inner walls remain intact and retain their electrical conductivity, which facilitates charge transport during electrocatalysis.

read more

Citations
More filters
Journal ArticleDOI

Metal-free catalysts for oxygen reduction reaction.

TL;DR: This paper presents a probabilistic procedure for estimating the polymethine content of carbon dioxide using a straightforward two-step procedure, and shows good results in both the stationary and the liquid phase.
Journal ArticleDOI

A metal–organic framework-derived bifunctional oxygen electrocatalyst

TL;DR: In this paper, a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal-organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C catalysts, is presented.
Journal ArticleDOI

Recent advances in zinc–air batteries

TL;DR: The fundamentals, challenges, and latest exciting advances related to zinc-air research are presented, and the detrimental effect of CO2 on battery performance is emphasized, and possible solutions summarized.
Journal ArticleDOI

Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts

TL;DR: A new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell with high activity and stability are described, providing a new direction for catalyst performance optimization for next-generation fuel cells.
Journal ArticleDOI

Engineering heterogeneous semiconductors for solar water splitting

TL;DR: In this paper, a critical review highlights some key factors influencing the efficiency of heterogeneous semiconductors for solar water splitting (i.e. improved charge separation and transfer, promoted optical absorption, optimized band gap position, lowered cost and toxicity, and enhanced stability and water splitting kinetics).
References
More filters
Journal ArticleDOI

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Journal ArticleDOI

What Are Batteries, Fuel Cells, and Supercapacitors?

TL;DR: Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices and are needed to service the wide energy requirements of various devices and systems.
Journal ArticleDOI

Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs

TL;DR: In this article, the authors quantified the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state of the art platinum electrocatalysts.
Journal ArticleDOI

High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt

TL;DR: A family of non–precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Journal ArticleDOI

Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons

TL;DR: A simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls is described.
Related Papers (5)