scispace - formally typeset
Journal ArticleDOI

An ultra-lightweight design for imperceptible plastic electronics

Reads0
Chats0
TLDR
In this paper, the authors present a platform that makes electronics both virtually unbreakable and imperceptible on polyimide polysilicon elastomers, which can be operated at high temperatures and in aqueous environments.
Abstract
Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.

read more

Citations
More filters
Journal ArticleDOI

Biomimetic temperature-sensing layer for artificial skins

TL;DR: In this article, pectin films mimic the sensing mechanism of pit membranes and parallel their record performances, achieving a sensitivity of at least 10 millikelvin in a wide temperature range (45 kelvin).
Journal ArticleDOI

Tactile-based active object discrimination and target object search in an unknown workspace

TL;DR: A tactile-based approach for estimating the center of mass of rigid objects and taking advantage of the prior knowledge obtained during the active touch learning, the robot took up to 15% fewer decision steps compared to the random method to achieve the same discrimination accuracy in active object discrimination task.
Journal ArticleDOI

Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants

TL;DR: These tape-based sensors with a facile operation module and accessible signal read-out represent an innovative point-of-care testing (POCT) device for forensic, military, consumer protection, environmental monitoring, and food safety applications.
Journal ArticleDOI

Directly drawn poly(3-hexylthiophene) field-effect transistors by electrohydrodynamic jet printing: improving performance with surface modification

TL;DR: In this study, direct micropatterning lines of poly(3-hexylthiophene) (P3HT) without any polymer binder were prepared by electrohydrodynamic jet printing to form organic field-effect transistors (OFETs) to realize the commercialization of the OFETs.
Journal ArticleDOI

Polymer-based flexible bioelectronics

TL;DR: The recent advances on the synthesis of a variety of polymers, the design of typical architectures and the integration of different functions for the flexible bioelectronic devices are summarized.
References
More filters
Journal ArticleDOI

Materials and mechanics for stretchable electronics

TL;DR: Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments, and applications in systems ranging from electronic eyeball cameras to deformable light-emitting displays are described.
Journal ArticleDOI

Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Journal ArticleDOI

A high-mobility electron-transporting polymer for printed transistors

TL;DR: A highly soluble and printable n-channel polymer exhibiting unprecedented OTFT characteristics under ambient conditions in combination with Au contacts and various polymeric dielectrics is reported and all-printed polymeric complementary inverters have been demonstrated.
PatentDOI

Stretchable form of single crystal silicon for high performance electronics on rubber substrates

TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Journal ArticleDOI

Stretchable and foldable silicon integrated circuits.

TL;DR: A simple approach to high-performance, stretchable, and foldable integrated circuits that integrate inorganic electronic materials, including aligned arrays of nanoribbons of single crystalline silicon, with ultrathin plastic and elastomeric substrates.
Related Papers (5)