scispace - formally typeset
Journal ArticleDOI

An ultra-lightweight design for imperceptible plastic electronics

Reads0
Chats0
TLDR
In this paper, the authors present a platform that makes electronics both virtually unbreakable and imperceptible on polyimide polysilicon elastomers, which can be operated at high temperatures and in aqueous environments.
Abstract
Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.

read more

Citations
More filters
Journal ArticleDOI

Skin-inspired electronic devices

TL;DR: The incorporation of sensing methods with transistors facilitates large-area sensor arrays as discussed by the authors, which has potential important applications in advanced robotics, prosthetics, and health monitoring technologies, but many opportunities remain for future development.
Journal ArticleDOI

Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials

TL;DR: Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules.
Journal ArticleDOI

Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition

TL;DR: The first bionic membrane sensor based on triboelectrification is reported for self-powered physiological and behavioral measurements such as local internal body pressures for non-invasive human health assessment and high-accuracy multimodal biometric authentication.
Journal ArticleDOI

An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring

TL;DR: In this paper, the authors report the fabrication of a self-assembled 3D films platform that combines a natural viscoelastic property material P(VDF-TrFe) with an electrically conductive material rGO for the first time.
Journal ArticleDOI

A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and pH

TL;DR: This paper demonstrates a wearable electrochemical device for continuous monitoring of ionized calcium and pH of body fluids using a disposable and flexible array of Ca(2+) and pH sensors that interfaces with a flexible printed circuit board that enables real-time quantitative analysis of these sensing elements in body fluids.
References
More filters
Journal ArticleDOI

Materials and mechanics for stretchable electronics

TL;DR: Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments, and applications in systems ranging from electronic eyeball cameras to deformable light-emitting displays are described.
Journal ArticleDOI

Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Journal ArticleDOI

A high-mobility electron-transporting polymer for printed transistors

TL;DR: A highly soluble and printable n-channel polymer exhibiting unprecedented OTFT characteristics under ambient conditions in combination with Au contacts and various polymeric dielectrics is reported and all-printed polymeric complementary inverters have been demonstrated.
PatentDOI

Stretchable form of single crystal silicon for high performance electronics on rubber substrates

TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Journal ArticleDOI

Stretchable and foldable silicon integrated circuits.

TL;DR: A simple approach to high-performance, stretchable, and foldable integrated circuits that integrate inorganic electronic materials, including aligned arrays of nanoribbons of single crystalline silicon, with ultrathin plastic and elastomeric substrates.
Related Papers (5)