scispace - formally typeset
Open AccessJournal ArticleDOI

Benchmarks for basic scheduling problems

TLDR
This paper proposes 260 randomly generated scheduling problems whose size is greater than that of the rare examples published, and the objective is the minimization of the makespan.
About
This article is published in European Journal of Operational Research.The article was published on 1993-01-22 and is currently open access. It has received 2173 citations till now. The article focuses on the topics: Flow shop scheduling & Job shop scheduling.

read more

Citations
More filters
Journal ArticleDOI

Using iterated local search for solving the flow-shop problem: Parallelization, parametrization, and randomization issues

TL;DR: The new ILS-ESP (where ESP is efficient, simple, and parallelizable) algorithm is introduced that is specifically designed to take advantage of parallel computing, allowing for competitive results in “real time” for all tested instances.
Journal ArticleDOI

Flow shop scheduling with multiple objectiveof minimizing makespan and total flow time

TL;DR: Three heuristic algorithms namely HAMC1, HAMC2 and HAMC3 have been proposed and two new hybrid algorithms are developed by taking the seed sequences yielded by a method proposed by Rajendran in his work to minimize flow time and improving it using search algorithm.
Journal ArticleDOI

Using intelligent backtracking to improve branch-and-bound methods: An application to Open-Shop problems

TL;DR: In this paper, an improved branch-and-bound algorithm for the open-shop problem is proposed based on intelligent backtracking, which reduces the number of backtracks by more than 90%.
Journal ArticleDOI

Constructive heuristic algorithms for the open shop problem

TL;DR: Two types of heuristic algorithms are developed: construction of a rank-minimal schedule by solving successively weighted maximum cardinality matching problems and construction of an approximate schedule by applying insertion techniques combined with beam search.
Journal ArticleDOI

Differential evolution for sequencing and scheduling optimization

TL;DR: A novel solution encoding mechanism is introduced for handling discrete variables in the context of DE and its performance is evaluated over a plethora of public benchmarks problems for three well-known NP-hard scheduling problems.
References
More filters
Journal ArticleDOI

Tabu Search—Part II

TL;DR: The elements of staged search and structured move sets are characterized, which bear on the issue of finiteness, and new dynamic strategies for managing tabu lists are introduced, allowing fuller exploitation of underlying evaluation functions.
Journal ArticleDOI

OR-Library: Distributing Test Problems by Electronic Mail

TL;DR: A system (OR-Library) that distributes test problems by electronic mail (e-mail) that has available test problems drawn from a number of different areas of operational research.
Journal ArticleDOI

A Guide to Simulation.

TL;DR: Despite the brevity of the book, its mathematical notation, and the problems which it poses without solutions, the textbook is imbued with a feeling for theitty-gritty practical aspects of simulation.
Journal ArticleDOI

A Computational Study of the Job-Shop Scheduling Problem

TL;DR: The optimization procedure, combining the heuristic method and the combinatorial branch and bound algorithm, solved the well-known 10×10 problem of J. F. Thomson in under 7 minutes of computation time on a Sun Sparcstation 1.
Related Papers (5)
Frequently Asked Questions (7)
Q1. What have the authors contributed in "Basic scheduling problems" ?

In this paper, the authors propose 260 scheduling problems whose size is greater than that of the rare examples published. The types of problems that the authors propose are: the permutation flow shop, the job shop and the open shop scheduling problems. 

let us mention5 that an iteration of taboo search needs about 4.10-6.n2.m seconds on a “Silicon Graphics” personal workstation (10 Mips). 

The machine Mij on which the jth operation of job i has to be performed is given by the following procedure :0) Mij := j (1 L Q M P 1) For i = 1 to nFor j = 1 to m Swap Mij and MiU[j,m]Let us note the use of another initial seed for the choice of the machines : Machine seed. 

The proportion of problems for which the authors found a solution for which the makespan was equal to the lower bound (or equal to the lower bound augmented by 2% for the 500-job 20-machine problems). 

This implementation uses only 32-bit integers and provides a uniformly distributed sequence of numbers between 0 and 1 (not contained) :3 0) Initial seed and X0 (0 < X0 < 231- 1) constants : a = 16 807, b = 127 773, c = 2 836, m = 231 - 11) Modification of k := Xi/b the seed : Xi+1 := a(Xi mod b) - kcIf Xi+1 < 0 then let Xi+1 := Xi+1 + m2) New value of the seed : Xi+1 Current value of the generator : Xi+1/mBelow, the authors shall denote by U(0,1) the pseudorandom number that this generator provides. 

The random number generator Let us recall the implementation of the linear congruential generator the authors have used which is based on the recursive formula Xi+1 = (16 807 Xi) mod (231 - 1). 

In order to implement the integer random procedure only with 32-bit integers, the problems have been chosen in such a way that one never has to deal with a seed X such that :a + P DE; )1( +−⋅ ≠ a + )1( +−