scispace - formally typeset
Open AccessJournal ArticleDOI

Beyond aerobic glycolysis : Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis

TLDR
Transformed cells exhibit a high rate of glutamine consumption that cannot be explained by the nitrogen demand imposed by nucleotide synthesis or maintenance of nonessential amino acid pools, and glutamine metabolism provides a carbon source that facilitates the cell's ability to use glucose-derived carbon and TCA cycle intermediates as biosynthetic precursors.
Abstract
Tumor cell proliferation requires rapid synthesis of macromolecules including lipids, proteins, and nucleotides. Many tumor cells exhibit rapid glucose consumption, with most of the glucose-derived carbon being secreted as lactate despite abundant oxygen availability (the Warburg effect). Here, we used 13C NMR spectroscopy to examine the metabolism of glioblastoma cells exhibiting aerobic glycolysis. In these cells, the tricarboxylic acid (TCA) cycle was active but was characterized by an efflux of substrates for use in biosynthetic pathways, particularly fatty acid synthesis. The success of this synthetic activity depends on activation of pathways to generate reductive power (NADPH) and to restore oxaloacetate for continued TCA cycle function (anaplerosis). Surprisingly, both these needs were met by a high rate of glutamine metabolism. First, conversion of glutamine to lactate (glutaminolysis) was rapid enough to produce sufficient NADPH to support fatty acid synthesis. Second, despite substantial mitochondrial pyruvate metabolism, pyruvate carboxylation was suppressed, and anaplerotic oxaloacetate was derived from glutamine. Glutamine catabolism was accompanied by secretion of alanine and ammonia, such that most of the amino groups from glutamine were lost from the cell rather than incorporated into other molecules. These data demonstrate that transformed cells exhibit a high rate of glutamine consumption that cannot be explained by the nitrogen demand imposed by nucleotide synthesis or maintenance of nonessential amino acid pools. Rather, glutamine metabolism provides a carbon source that facilitates the cell's ability to use glucose-derived carbon and TCA cycle intermediates as biosynthetic precursors.

read more

Citations
More filters
Journal ArticleDOI

The emerging role of fumarate as an oncometabolite

TL;DR: The evidence for proposing fumarate as an onco-metabolite, proposed to act as a competitive inhibitor of 2-oxoglutarate-dependent oxygenases including the hypoxia-inducible factor (HIF) hydroxylases, thus activating oncogenic HIF pathways, is discussed.
Journal ArticleDOI

Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer.

TL;DR: It is shown that activation of NRF2, in either mouse or human cancer cells, leads to increased dependency on exogenous glutamine through increased consumption of glutamate for glutathione synthesis and glutamate secretion by xc- antiporter system, creating a metabolic bottleneck.
Journal ArticleDOI

Applications of NMR spectroscopy to systems biochemistry.

TL;DR: This review describes how various direct and isotope-edited 1D and 2D NMR methods can be employed to profile metabolites and their isotopomer distributions by stable isotoped metabolomic (SIRM) analysis and illustrates how NMR has been applied in vitro, ex vivo, or in vivo in various stable isotope tracer-based metabolic studies, to gain systematic and novel metabolic insights in different biological systems.
Journal ArticleDOI

M2 isoform of pyruvate kinase is dispensable for tumor maintenance and growth

TL;DR: Although pyruvate kinase knockdown results in modest impairment of proliferation in vitro, in vivo growth of established xenograft tumors is unaffected by PKM2 absence, suggesting that other metabolic pathways bypass its function.
Journal ArticleDOI

Cancer metabolism in space and time: Beyond the Warburg effect.

TL;DR: This review describes heterogeneity in cancer cells also in metabolic fluxes, thus showing the relative contribution of different metabolic activities to tumor progression according to the cellular context.
References
More filters
Journal ArticleDOI

On the origin of cancer cells.

Origin of cancer cells

Otto Warburg
Journal ArticleDOI

Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells.

TL;DR: Observations suggest that glutamine provides energy by aerobic oxidation from citric acid cycle metabolism, provides more than half of the cell energy when high concentrations of glucose are present, and greater than 98% when fructose or galactose is the carbohydrate.
Journal ArticleDOI

ATP citrate lyase inhibition can suppress tumor cell growth

TL;DR: ACL inhibition by RNAi or the chemical inhibitor SB-204990 limits in vitro proliferation and survival of tumor cells displaying aerobic glycolysis, and these treatments also reduce in vivo tumor growth and induce differentiation.
Related Papers (5)