scispace - formally typeset
Journal ArticleDOI

Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process

Reads0
Chats0
TLDR
In this article, a response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the three important reaction variables (methanol quantity, acid concentration, and reaction time) for reduction of free fatty acid (FFA) content of the oil to around 1% as compared to methanol quantity (M′) and reaction times (T′), and for carrying out transesterification of the pretreated oil.
Abstract
Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the three important reaction variables—methanol quantity (M), acid concentration (C) and reaction time (T) for reduction of free fatty acid (FFA) content of the oil to around 1% as compared to methanol quantity (M′) and reaction time (T′) and for carrying out transesterification of the pretreated oil. Using RSM, quadratic polynomial equations were obtained for predicting acid value and transesterification. Verification experiments confirmed the validity of both the predicted models. The optimum combination for reducing the FFA of Jatropha curcas oil from 14% to less than 1% was found to be 1.43% v/v H2SO4 acid catalyst, 0.28 v/v methanol-to-oil ratio and 88-min reaction time at a reaction temperature of 60 °C as compared to 0.16 v/v methanol-to-pretreated oil ratio and 24 min of reaction time at a reaction temperature of 60 °C for producing biodiesel. This process gave an average yield of biodiesel more than 99%. The fuel properties of jatropha biodiesel so obtained were found to be comparable to those of diesel and confirming to the American and European standards.

read more

Citations
More filters
Journal ArticleDOI

A review on biodiesel production using catalyzed transesterification

TL;DR: In this article, the main factors affecting the yield of biodiesel, i.e. alcohol quantity, reaction time, reaction temperature and catalyst concentration, are discussed, as well as new new processes for biodiesel production.
Journal ArticleDOI

Progress and recent trends in biodiesel fuels

TL;DR: The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature as discussed by the authors, which is the commonly used alcohol in this process, due to its low cost.
Journal ArticleDOI

Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review

TL;DR: In this paper, the authors reviewed the source of production and characterization of vegetable oils and their methyl ester as the substitute of the petroleum fuel and future possibilities of Biodiesel production.
Journal ArticleDOI

Jatropha bio-diesel production and use

TL;DR: In this paper, the authors present an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the biodiesel and the by-products.
Journal ArticleDOI

Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

TL;DR: It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process, which still suffers from serious mass transfer limitation problems and therefore is not favorable for industrial application.
References
More filters
Journal ArticleDOI

Triglycerides-based diesel fuels

TL;DR: The main advantages of using biodiesel are its renewability, better-quality exhaust gas emissions, its biodegradability and given that all the organic carbon present is photosynthetic in origin, it does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the greenhouse effect as mentioned in this paper.
Journal ArticleDOI

Biodiesel production from oils and fats with high free fatty acids

TL;DR: In this paper, a technique is described to reduce the free fatty acids content of these feedstocks using an acid catalyzed pretreatment to esterify the free acids before transesterifying the triglycerides with an alkaline catalyst to complete the reaction.
Journal ArticleDOI

Integrated biodiesel production: a comparison of different homogeneous catalysts systems.

TL;DR: Although all the transesterification reactions were quite rapid and the biodiesel layers achieved nearly 100% methyl ester concentrations, the reactions using sodium hydroxide turned out the fastest.
Journal ArticleDOI

Optimisation of biodiesel production by sunflower oil transesterification

TL;DR: In this work, sunflower methyl esters were characterised to test their properties as fuels in diesel engines, such as viscosity, flash point, cold filter plugging point and acid value, and showed that biodiesel obtained under the optimum conditions is an excellent substitute for fossil fuels.
Related Papers (5)