scispace - formally typeset
Open AccessJournal ArticleDOI

Can Ceftazidime-Avibactam and Aztreonam Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae?

Reads0
Chats0
TLDR
In vitro activity of CAZ-AVI in combination with ATM against diverse Enterobacteriaceae possessing MBLs was demonstrated, and the data presented herein require us to carefully consider this new therapeutic combination to treat infections caused by MBL-producing Enterobacteria.
Abstract
Based upon knowledge of the hydrolytic profile of major β-lactamases found in Gram-negative bacteria, we tested the efficacy of the combination of ceftazidime-avibactam (CAZ-AVI) with aztreonam (ATM) against carbapenem-resistant enteric bacteria possessing metallo-β-lactamases (MBLs). Disk diffusion and agar-based antimicrobial susceptibility testing were initially performed to determine the in vitro efficacy of a unique combination of CAZ-AVI and ATM against 21 representative Enterobacteriaceae isolates with a complex molecular background that included blaIMP, blaNDM, blaOXA-48, blaCTX-M, blaAmpC, and combinations thereof. Time-kill assays were conducted, and the in vivo efficacy of this combination was assessed in a murine neutropenic thigh infection model. By disk diffusion assay, all 21 isolates were resistant to CAZ-AVI alone, and 19/21 were resistant to ATM. The in vitro activity of CAZ-AVI in combination with ATM against diverse Enterobacteriaceae possessing MBLs was demonstrated in 17/21 isolates, where the zone of inhibition was ≥21 mm. All isolates demonstrated a reduction in CAZ-AVI agar dilution MICs with the addition of ATM. At 2 h, time-kill assays demonstrated a ≥4-log10-CFU decrease for all groups that had CAZ-AVI with ATM (8 μg/ml) added, compared to the group treated with CAZ-AVI alone. In the murine neutropenic thigh infection model, an almost 4-log10-CFU reduction was noted at 24 h for CAZ-AVI (32 mg/kg every 8 h [q8h]) plus ATM (32 mg/kg q8h) versus CAZ-AVI (32 mg/kg q8h) alone. The data presented herein require us to carefully consider this new therapeutic combination to treat infections caused by MBL-producing Enterobacteriaceae.

read more

Citations
More filters
Journal ArticleDOI

Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria.

TL;DR: Overall, aztreonam-ceftazidime-avibactam was the most potent combination to treat infections caused by MBL producers compared with azt transporteram-amoxicillin-clavulanate and aztrexam-cftolozane-tazobactam, offering the main advantage to be markedly cheaper.
Journal ArticleDOI

Update of the treatment of nosocomial pneumonia in the ICU.

TL;DR: An interdisciplinary group of experts, comprising specialists in anaesthesia and resuscitation and in intensive care medicine, updated the epidemiology and antimicrobial resistance and established clinical management priorities based on patients’ risk factors to improve VAP outcomes.
Journal ArticleDOI

Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens.

TL;DR: The authors present the modern available knowledge regarding novel β-lactam-β- lactamase inhibitors, i.e. mechanisms of action, in vitro activity, current PK/PDs, clinical trials and clinical efficacy against MDR and XDR Gram-negatives, as well as toxicity issues.
Journal ArticleDOI

Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa.

TL;DR: CZA in combination with amikacin (AMK), aztreonam (AZT), colistin (COL), fosfomycin (FOS), and meropenem (MEM) against 21 carbapenem-resistant Klebsiella pneumoniae and 21 MDR Pseudomonas aeruginosa strains shows potential for therapeutic options in difficult to treat pathogens.
Journal ArticleDOI

Multidrug-resistant Gram-negative bacterial infections in solid organ transplant recipients—Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice

TL;DR: These updated guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation review the diagnosis, prevention, and management of infections due to multidrug‐resistant Gram‐negative bacilli in the pre‐ and post‐transplant period.
References
More filters
Journal ArticleDOI

Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations.

TL;DR: Ceftolozane/tazobactam and ceftazidime/avibactam are 2 new second-generation cephalosporin/β-lactamase inhibitor combinations and may prove useful in the treatment of MDR GNB infections.
Journal ArticleDOI

New β-Lactamase Inhibitors: a Therapeutic Renaissance in an MDR World

TL;DR: This “renaissance” of β-lactamase inhibitors offers new hope in a world plagued by multidrug-resistant (MDR) Gram-negative bacteria.
Related Papers (5)