scispace - formally typeset
Open AccessJournal ArticleDOI

Cholesterol, lipid rafts, and disease

Kai Simons, +1 more
- 01 Sep 2002 - 
- Vol. 110, Iss: 5, pp 597-603
Reads0
Chats0
TLDR
The presence of liquid-ordered microdomains in cells transforms the classical membrane fluid mosaic model of Singer and Nicholson into a more complex system, where proteins and lipid rafts diffuse laterally within a two-dimensional liquid.
Abstract
Lipid rafts are dynamic assemblies of proteins and lipids that float freely within the liquid-disordered bilayer of cellular membranes but can also cluster to form larger, ordered platforms. Rafts are receiving increasing attention as devices that regulate membrane function in eukaryotic cells. In this Perspective, we briefly summarize the structure and regulation of lipid rafts before turning to their evident medical importance. Here, we will give some examples of how rafts contribute to our understanding of the pathogenesis of different diseases. For more information on rafts, the interested reader is referred to recent reviews (1, 2). Composition of lipid rafts Lipid rafts have changed our view of membrane organization. Rafts are small platforms, composed of sphingolipids and cholesterol in the outer exoplasmic leaflet, connected to phospholipids and cholesterol in the inner cytoplasmic leaflet of the lipid bilayer. These assemblies are fluid but more ordered and tightly packed than the surrounding bilayer. The difference in packing is due to the saturation of the hydrocarbon chains in raft sphingolipids and phospholipids as compared with the unsaturated state of fatty acids of phospholipids in the liquid-disordered phase (3). Thus, the presence of liquid-ordered microdomains in cells transforms the classical membrane fluid mosaic model of Singer and Nicholson into a more complex system, where proteins and lipid rafts diffuse laterally within a two-dimensional liquid. Membrane proteins are assigned to three categories: those that are mainly found in the rafts, those that are present in the liquid-disordered phase, and those that represent an intermediate state, moving in and out of rafts. Constitutive raft residents include glycophosphatidylinositol-anchored (GPI-anchored) proteins; doubly acylated proteins, such as tyrosine kinases of the Src family, Gα subunits of heterotrimeric G proteins, and endothelial nitric oxide synthase (eNOS); cholesterol-linked and palmitate-anchored proteins like Hedgehog (see Jeong and McMahon, this Perspective series, ref. 4); and transmembrane proteins, particularly palmitoylated proteins such as influenza virus hemagglutinin and β-secretase (BACE) (1). Some membrane proteins are regulated raft residents and have a weak affinity for rafts in the unliganded state. After binding to a ligand, they undergo a conformational change and/or become oligomerized. When proteins oligomerize, they increase their raft affinity (5). A peripheral membrane protein, such as a nonreceptor tyrosine kinase, can be reversibly palmitoylated and can lose its raft association after depalmitoylation (6). By these means, the partitioning of proteins in and out of rafts can be tightly regulated.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Role of amyloid precursor protein, amyloid-beta and gamma-secretase in cholesterol maintenance.

TL;DR: The current understanding of the molecular mechanism by which amyloid-β (Aβ) peptides regulate cholesterol and sphingomyelin metabolism is summarized, and how in return cholesterol andSphingomyelin regulate Aβ peptide production is summarized.
Journal ArticleDOI

Phase Separation in Binary Mixtures of Bipolar and Monopolar Lipid Dispersions Revealed by 2H NMR Spectroscopy, Small Angle X-Ray Scattering, and Molecular Theory

TL;DR: Observations are consistent with the presence of microphase-separated domains in the mixed membrane samples that arise from POPC-C(20)BAS hydrophobic mismatch and suggest the coexistence of phase-separate bolalipid-rich domains and POPC -rich domains.
Journal ArticleDOI

Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development.

TL;DR: Endocytic pathways that are available for drug delivery by large nanocarriers are discussed, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.
Journal ArticleDOI

Photoprotection against UVAR: effective triterpenoids require a lipid raft stabilizing chemical structure.

TL;DR: Evidence is presented that natural material‐derived triterpenoids such as oleanolic acid can abrogate UVA‐induced gene expression by raft stabilization, because its isomer ursolic acid also integrates within the rafts without inhibiting ceramide formation and upregulation of gene expression.
Journal ArticleDOI

Desmosterolosis presenting with multiple congenital anomalies.

TL;DR: Considering Desmosterolosis in the differential diagnosis of patients who present with concurrent agenesis of the corpus callosum with white matter atrophy and ventriculomegaly, retromicrognathia with or without cleft palate, hand contractures, and delay of growth and development is suggested.
References
More filters
Journal ArticleDOI

Lipid rafts and signal transduction

TL;DR: It is now becoming clear that lipid micro-environments on the cell surface — known as lipid rafts — also take part in this process of signalling transduction, where protein–protein interactions result in the activation of signalling cascades.
Journal ArticleDOI

Alzheimer's Disease: Genes, Proteins, and Therapy

TL;DR: Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Journal ArticleDOI

Functions of lipid rafts in biological membranes.

TL;DR: The relationship between detergent-resistant membranes, rafts, caveolae, and low-density plasma membrane fragments, and possible functions of lipid rafts in membranes are discussed.
Journal ArticleDOI

Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells.

TL;DR: Fluorescence resonance energy transfer measurements in living cells revealed that acyl but not prenyl modifications promote clustering in lipid rafts, and the nature of the lipid anchor on a protein is sufficient to determine submicroscopic localization within the plasma membrane.
Journal ArticleDOI

Statins and the risk of dementia.

TL;DR: Individuals of 50 years and older who were prescribed statins had a substantially lowered risk of developing dementia, independent of the presence or absence of untreated hyperlipidaemia, or exposure to nonstatin LLAs.
Related Papers (5)