scispace - formally typeset
Open AccessJournal ArticleDOI

Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale.

Reads0
Chats0
TLDR
There is a direct correlation between carrier mobility and Raman topography of epitaxial graphene (EG) grown on silicon carbide (SiC) and it is shown that carrier mobility depends strongly on the graphene layer stacking.
Abstract
We report a direct correlation between carrier mobility and Raman topography of epitaxial graphene (EG) grown on silicon carbide (SiC). We show the Hall mobility of material on SiC(0001) is highly dependent on thickness and monolayer strain uniformity. Additionally, we achieve high mobility epitaxial graphene (18100 cm(2)/(V s) at room temperature) on SiC(0001) and show that carrier mobility depends strongly on the graphene layer stacking.

read more

Citations
More filters
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics.

TL;DR: The fundamental structure and properties of GO-based thin films are discussed in relation to their potential applications in electronics and optoelectronics.
Journal ArticleDOI

Graphene: An Emerging Electronic Material

TL;DR: The versatility of graphene-based devices goes beyond conventional transistor circuits and includes flexible and transparent electronics, optoelectronics, sensors, electromechanical systems, and energy technologies.
Journal ArticleDOI

Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue

TL;DR: It is shown that an inelastic aerogel made of single-walled carbon nanotubes can be transformed into a superelastic material by coating it with between one and five layers of graphene nanoplates, and the graphene-coated aerogels exhibits no change in mechanical properties after more than 1 × 10(6) compressive cycles.
Journal ArticleDOI

Raman Spectroscopic Characterization of Graphene

TL;DR: In this paper, the intensity of the G band increases with increased graphene layers, and the shape of 2D band evolves into four peaks of bilayer graphene from a single peak of monolayer graphene.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

Large-scale pattern growth of graphene films for stretchable transparent electrodes

TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Related Papers (5)