scispace - formally typeset
Open AccessJournal ArticleDOI

Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger

Reads0
Chats0
TLDR
A historic perspective on the development of the field is provided, common trends are emphasized, and new directions in c-di-GMP research are highlighted that will give a deeper understanding of this truly universal bacterial second messenger.
Abstract
SUMMARY Twenty-five years have passed since the discovery of cyclic dimeric (3′→5′) GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.

read more

Citations
More filters
Journal ArticleDOI

Inhibiting effect of quorum quenching on biomass accumulation: A clogging control strategy in gas biofilters

TL;DR: In this paper , the authors developed a new method using enzymatic-quorum quenching (QQ) to simultaneously control biomass and maintain a stable removal efficiency of gas biofilters.
Journal ArticleDOI

Toxin–antitoxin systems and biofilm formation in bacteria

TL;DR: This review focuses on the most recent evidence that connect toxin–antitoxin systems with bacterial biofilm.
Journal ArticleDOI

Tlr0485 is a cAMP-activated c-di-GMP phosphodiesterase in a cyanobacterium Thermosynechococcus.

TL;DR: The prevalence of cAMP-activated c-di-GMP phosphodiesterase genes in cyanobacterial genomes suggests that the direct crosstalk between cAMP and c- di-G MP signaling systems may be crucial for cyanob bacterial environmental responses.
Journal ArticleDOI

Functional Characterization of c-di-GMP Signaling-Related Genes in the Probiotic Lactobacillus acidophilus.

TL;DR: The c-di-GMP metabolism-related genes, in L. acidophilus, work jointly to regulate its functions in EPS formation and co-aggregation, implying that the probiotic properties of Lactobacillus species are affected.
References
More filters
Journal ArticleDOI

The Pfam protein families database

TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Journal ArticleDOI

WebLogo: A Sequence Logo Generator

TL;DR: WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment that provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive.
Journal ArticleDOI

Pfam: the protein families database.

TL;DR: Pfam as discussed by the authors is a widely used database of protein families, containing 14 831 manually curated entries in the current version, version 27.0, and has been updated several times since 2012.
Journal ArticleDOI

The COG database: a tool for genome-scale analysis of protein functions and evolution

TL;DR: The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes.
Journal ArticleDOI

Cyclic GMP-AMP Synthase is a Cytosolic DNA Sensor that Activates the Type-I Interferon Pathway

TL;DR: Results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP, which belongs to the nucleotidyltransferase family.
Related Papers (5)