scispace - formally typeset
Journal ArticleDOI

Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures

TLDR
In this paper, the impact factors on the hysteresis loops are discussed based on recent developments in ferroelectric and related materials, including the effect of materials (grain size and grain boundary, phase and phase boundary, doping, anisotropy, thickness), aging, and measurement conditions (applied field amplitude, fatigue, frequency, temperature, stress), which can affect the hysteretic behaviors of the ferroelectrics.
Abstract
Due to the nature of domains, ferroics, including ferromagnetic, ferroelectric, and ferroelastic materials, exhibit hysteresis phenomena with respect to external driving fields (magnetic field, electric field, or stress). In principle, every ferroic material has its own hysteresis loop, like a fingerprint, which contains information related to its properties and structures. For ferroelectrics, many characteristic parameters, such as coercive field, spontaneous, and remnant polarizations can be directly extracted from the hysteresis loops. Furthermore, many impact factors, including the effect of materials (grain size and grain boundary, phase and phase boundary, doping, anisotropy, thickness), aging (with and without poling), and measurement conditions (applied field amplitude, fatigue, frequency, temperature, stress), can affect the hysteretic behaviors of the ferroelectrics. In this feature article, we will first give the background of the ferroic materials and multiferroics, with an emphasis on ferroelectrics. Then it is followed by an introduction of the characterizing techniques for the loops, including the polarization–electric field loops and strain–electric field curves. A caution is made to avoid misinterpretation of the loops due to the existence of conductivity. Based on their morphologic features, the hysteresis loops are categorized to four groups and the corresponding material usages are introduced. The impact factors on the hysteresis loops are discussed based on recent developments in ferroelectric and related materials. It is suggested that decoding the fingerprint of loops in ferroelectrics is feasible and the comprehension of the material properties and structures through the hysteresis loops is established.

read more

Citations
More filters
Journal ArticleDOI

Perovskite lead-free dielectrics for energy storage applications

TL;DR: In this paper, the authors summarize the principles of dielectric energy-storage applications, and recent developments on different types of Dielectrics, namely linear dielectrics (LDE), paraelectric, ferroelectrics, and antiferro electrics, focusing on perovskite lead-free dielectors.
Journal ArticleDOI

Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances.

TL;DR: The optimization of high-energy-storage dielectrics will have far-reaching impacts on the sustainable energy and will be an important research topic in the near future.
Journal ArticleDOI

BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives

TL;DR: A critical review that encompasses the fundamentals and state-of-the-art knowledge of barium titanate-based piezoelectrics is presented in this paper, where a detailed compilation of their functional and mechanical properties is provided.
Journal ArticleDOI

Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review.

TL;DR: In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint and the impacts and challenges are summarized to guide on-going and future research in the development of relaxors for the next generation electroac acoustic transducers.
Journal ArticleDOI

Giant Strains in Non-Textured (Bi1/2Na1/2)TiO3-Based Lead-Free Ceramics

TL;DR: An in situ transmission electron microscopy study indicates that the excellent performance originates from phase transitions under the applied electric fields.
References
More filters
Journal ArticleDOI

Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III

TL;DR: In this paper, a comprehensive description of the phenomena of phase change may be summarized in Phase Change, Grain Number and Microstructure Formulas or Diagrams, giving, respectively, the transformed volume, grain, and microstructure densities as a function of time, temperature, and other variables.
Journal ArticleDOI

Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals

TL;DR: In this article, the piezoelectric properties of relaxor based ferroelectric single crystals, such as Pb(Zn1/3Nb2/3)O3 and PbTiO3, were investigated for electromechanical actuators.
Journal ArticleDOI

Multiferroics: a magnetic twist for ferroelectricity

TL;DR: It is found that even a weak magnetoelectric interaction can lead to spectacular cross-coupling effects when it induces electric polarization in a magnetically ordered state.
Journal ArticleDOI

Ferroelectric ceramics : History and technology

TL;DR: Ferroelectric ceramics have been the heart and soul of several multibillion dollar industries, ranging from high-dielectric-constant capacitors to later developments in piezoelectric transducers, positive temperature coefficient devices, and electrooptic light valves as mentioned in this paper.
Journal ArticleDOI

The Renaissance of Magnetoelectric Multiferroics

TL;DR: Magnetoelectric multiferroics combine ferromagnetic magnetization and ferroelectricity in the same phase and have tremendous potential for applications, not only because they possess the properties of both parent phenomena, but also because coupling between ferromagnetism and electric polarization can lead to additional novel effects as discussed by the authors.
Related Papers (5)