scispace - formally typeset
Open AccessProceedings ArticleDOI

DeepXplore: Automated Whitebox Testing of Deep Learning Systems

TLDR
DeepXplore efficiently finds thousands of incorrect corner case behaviors in state-of-the-art DL models with thousands of neurons trained on five popular datasets including ImageNet and Udacity self-driving challenge data.
Abstract
Deep learning (DL) systems are increasingly deployed in safety- and security-critical domains including self-driving cars and malware detection, where the correctness and predictability of a system's behavior for corner case inputs are of great importance Existing DL testing depends heavily on manually labeled data and therefore often fails to expose erroneous behaviors for rare inputs We design, implement, and evaluate DeepXplore, the first whitebox framework for systematically testing real-world DL systems First, we introduce neuron coverage for systematically measuring the parts of a DL system exercised by test inputs Next, we leverage multiple DL systems with similar functionality as cross-referencing oracles to avoid manual checking Finally, we demonstrate how finding inputs for DL systems that both trigger many differential behaviors and achieve high neuron coverage can be represented as a joint optimization problem and solved efficiently using gradient-based search techniques DeepXplore efficiently finds thousands of incorrect corner case behaviors (eg, self-driving cars crashing into guard rails and malware masquerading as benign software) in state-of-the-art DL models with thousands of neurons trained on five popular datasets including ImageNet and Udacity self-driving challenge data For all tested DL models, on average, DeepXplore generated one test input demonstrating incorrect behavior within one second while running only on a commodity laptop We further show that the test inputs generated by DeepXplore can also be used to retrain the corresponding DL model to improve the model's accuracy by up to 3%

read more

Citations
More filters
Journal ArticleDOI

Adversarial Examples: Attacks and Defenses for Deep Learning

TL;DR: In this paper, the authors review recent findings on adversarial examples for DNNs, summarize the methods for generating adversarial samples, and propose a taxonomy of these methods.
Proceedings ArticleDOI

DeepTest: automated testing of deep-neural-network-driven autonomous cars

TL;DR: DeepTest is a systematic testing tool for automatically detecting erroneous behaviors of DNN-driven vehicles that can potentially lead to fatal crashes and systematically explore different parts of the DNN logic by generating test inputs that maximize the numbers of activated neurons.
Proceedings ArticleDOI

AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation

TL;DR: This work presents AI2, the first sound and scalable analyzer for deep neural networks, and introduces abstract transformers that capture the behavior of fully connected and convolutional neural network layers with rectified linear unit activations (ReLU), as well as max pooling layers.
Proceedings ArticleDOI

Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning

TL;DR: A thorough overview of the evolution of this research area over the last ten years and beyond is provided, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Image quality assessment: from error visibility to structural similarity

TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.