scispace - formally typeset
Journal ArticleDOI

Derivation of pluripotent epiblast stem cells from mammalian embryos

Reads0
Chats0
TLDR
It is shown that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells.
Abstract
Although the first mouse embryonic stem (ES) cell lines were derived 25 years ago using feeder-layer-based blastocyst cultures, subsequent efforts to extend the approach to other mammals, including both laboratory and domestic species, have been relatively unsuccessful. The most notable exceptions were the derivation of non-human primate ES cell lines followed shortly thereafter by their derivation of human ES cells. Despite the apparent common origin and the similar pluripotency of mouse and human embryonic stem cells, recent studies have revealed that they use different signalling pathways to maintain their pluripotent status. Mouse ES cells depend on leukaemia inhibitory factor and bone morphogenetic protein, whereas their human counterparts rely on activin (INHBA)/nodal (NODAL) and fibroblast growth factor (FGF). Here we show that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells. Our results demonstrate that activin/Nodal signalling has an evolutionarily conserved role in the derivation and the maintenance of pluripotency in these novel stem cells. Epiblast stem cells provide a valuable experimental system for determining whether distinctions between mouse and human embryonic stem cells reflect species differences or diverse temporal origins.

read more

Citations
More filters
Journal ArticleDOI

Porcine induced pluripotent stem cells analogous to naïve and primed embryonic stem cells of the mouse.

TL;DR: The objective of the present work has been to develop naïve piPSC, which bears a striking resemblance to naïve mESC in colony morphology, are dependent on LIF to maintain an undifferentiated phenotype, and express markers consistent with pluripotency.
Journal ArticleDOI

Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application.

TL;DR: The developmental pathways and embryological origins of vascular SMCs are examined, in vitro strategies for deriving SMCs from human embryonic stem cells and induced pluripotent stem cells are discussed, and the potential for vascular disease modeling using iPSC-derived SMCs is reviewed.
Journal ArticleDOI

The liberation of embryonic stem cells.

TL;DR: The advances in the understanding of the signaling pathways regulating mES cell self-renewal that led to the first derivation of rat ES cells are summarized and the new opportunities presented for transgenic modeling on diverse genetic backgrounds are highlighted.
Journal ArticleDOI

Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells.

TL;DR: This synergism between Activin A and BMP4 during the in vitro differentiation of hESC into DE suggests a complex interplay between BMP and Activin/Nodal signalingDuring the in vivo allocation and expansion of the endoderm lineage.
Journal ArticleDOI

Induced pluripotent stem cells: epigenetic memories and practical implications.

TL;DR: Interestingly, iPSC populations with perceived 'anomalies' can be coaxed to a more ESC-like cellular state either by continuous passaging--which attenuates these epigenetic differences--or treatment with small molecules that target the machinery responsible for remodelling the genome.
References
More filters
Journal ArticleDOI

Embryonic Stem Cell Lines Derived from Human Blastocysts

TL;DR: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages.
Journal ArticleDOI

Establishment in culture of pluripotential cells from mouse embryos

TL;DR: The establishment in tissue culture of pluripotent cell lines which have been isolated directly from in vitro cultures of mouse blastocysts are reported, able to differentiate either in vitro or after innoculation into a mouse as a tumour in vivo.
Journal ArticleDOI

Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells

TL;DR: In this article, the authors described the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice and demonstrated the pluripotency of these embryonic stem cells by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types.
Journal ArticleDOI

Core transcriptional regulatory circuitry in human embryonic stem cells.

TL;DR: Insight is provided into the transcriptional regulation of stem cells and how OCT4, SOX2, and NANOG contribute to pluripotency and self-renewal and how they collaborate to form regulatory circuitry consisting of autoregulatory and feedforward loops.
Journal ArticleDOI

Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.

TL;DR: A role is established for Oct-3/4 as a master regulator of pluripotency that controls lineage commitment and the sophistication of critical transcriptional regulators is illustrated and the consequent importance of quantitative analyses are illustrated.
Related Papers (5)