scispace - formally typeset
Open AccessJournal ArticleDOI

Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification

TLDR
It is shown that the physiological roles of Foxo genes are functionally diverse in mammals, and their in vivo physiological roles are largely unknown.
Abstract
Genetic analysis in Caenorhabditis elegans has uncovered essential roles for DAF-16 in longevity, metabolism, and reproduction. The mammalian orthologs of DAF-16, the closely-related FOXO subclass of forkhead transcription factors (FKHR/FOXO1, FKHRL1/FOXO3a, and AFX/FOXO4), also have important roles in cell cycle arrest, apoptosis and stress responses in vitro, but their in vivo physiological roles are largely unknown. To elucidate their role in normal development and physiology, we disrupted each of the Foxo genes in mice. Foxo1-null embryos died on embryonic day 10.5 as a consequence of incomplete vascular development. Foxo1-null embryonic and yolk sac vessels were not well developed at embryonic day 9.5, and Foxo1 expression was found in a variety of embryonic vessels, suggesting a crucial role of this transcription factor in vascular formation. On the other hand, both Foxo3a- and Foxo4-null mice were viable and grossly indistinguishable from their littermate controls, indicating dispensability of these two members of the Foxo transcription factor family for normal vascular development. Foxo3a-null females showed age-dependent infertility and had abnormal ovarian follicular development. In contrast, histological analyses of Foxo4-null mice did not identify any consistent abnormalities. These results demonstrate that the physiological roles of Foxo genes are functionally diverse in mammals.

read more

Citations
More filters
Journal ArticleDOI

Defining the Role of mTOR in Cancer

TL;DR: Recent progress in understanding mTOR signaling is discussed, paying particular attention to its relevance in cancer and the use of rapamycin in oncology.
Journal ArticleDOI

FoxOs at the crossroads of cellular metabolism, differentiation, and transformation.

TL;DR: Forkhead transcription factors of the FoxO subfamily are emerging as a shared component among pathways regulating diverse cellular functions, such as differentiation, metabolism, proliferation, and survival, according to their two-tiered mechanism of phosphorylation and acetylation.
Journal ArticleDOI

FOXO transcription factors at the interface between longevity and tumor suppression.

TL;DR: Consistent with the notion that stress resistance is highly coupled with lifespan extension, activation of FOXO transcription factors in worms and flies increases longevity and suggests that FOXO factors play a tumor suppressor role in a variety of cancers.
Journal ArticleDOI

The FoxO code

TL;DR: The FoxO family of Forkhead transcription factors plays an important role in longevity and tumor suppression by upregulating target genes involved in stress resistance, metabolism, cell cycle arrest and apoptosis and an intriguing possibility is that FoxO PTMs may act as a ‘molecular FoxO code’ read by selective protein partners to rapidly regulate gene-expression programs.
References
More filters
Journal ArticleDOI

Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor

TL;DR: It is demonstrated that Akt also regulates the activity of FKHRL1, a member of the Forkhead family of transcription factors, which triggers apoptosis most likely by inducing the expression of genes that are critical for cell death, such as the Fas ligand gene.
Book

Manipulating the mouse embryo: A laboratory manual

TL;DR: Here are recorded the tech- niques for preparing, inserting and analysing DNA sequences, for retroviral infection of mice, for production and use of EC and EK cells as vehicles for engineered sequences and for nuclear transplantation - all against a background of the basic procedures required for pro- ducing and handling the em- bryos.
Journal ArticleDOI

Molecular regulation of vessel maturation.

TL;DR: The maturation of nascent vasculature, formed by vasculogenesis or angiogenesis, requires recruitment of mural cells, generation of an extracellular matrix and specialization of the vessel wall for structural support and regulation of vessel function.
Journal ArticleDOI

The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans

TL;DR: It is shown that null mutations in Daf-16 suppress the effects of mutations in daf-2 or age-1; lack of dAF-16 bypasses the need for this insulin receptor-like signalling pathway.
Journal ArticleDOI

daf-16: An HNF-3/forkhead Family Member That Can Function to Double the Life-Span of Caenorhabditis elegans

TL;DR: The wild-type Caenorhabditis elegans nematode ages rapidly, undergoing development, senescence, and death in less than 3 weeks, while mutants with reduced activity of the gene daf-2, a homolog of the insulin and insulin-like growth factor receptors, age more slowly than normal and live more than twice as long.
Related Papers (5)