scispace - formally typeset
Open AccessJournal ArticleDOI

Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

Reads0
Chats0
TLDR
Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-basedBiofuels.
Abstract
Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity

TL;DR: In this article, inert carbon electrodes with silver salts were used to produce stable and reversible electrode reactions over many cycles, and power production was stable over 100 discharging cycles, demonstrating excellent reversibility.
Journal ArticleDOI

Fields of dreams: negotiating an ethanol agenda in the Midwest United States.

TL;DR: It is argued that current US agrofuels production and politics reinforce longstanding and unequal political economic relationships in industrial agriculture and privilege urban and other actors' social and ecological interests over those of rural places of production.
Journal ArticleDOI

Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited

TL;DR: In this paper, the authors focus on the availability of marginal lands for dedicated bioenergy crops and ignore the human role in decisions to convert marginal land to bioenergy crop production, while focusing on biophysical land traits.

Biodiesel Handling and Use Guide

Abstract: Notice This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
Journal ArticleDOI

Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States

TL;DR: An opportunity to significantly expand CCUS in the United States in the near-term is demonstrated, spurred by new financial incentives enacted in February 2018, by targeting the lowest-cost capture opportunities and by deploying only commercially proven technologies.
References
More filters
Journal ArticleDOI

Nonpoint pollution of surface waters with phosphorus and nitrogen

TL;DR: In this article, a review of the available scientific information, they are confident that nonpoint pollution of surface waters with P and N could be reduced by reducing surplus nutrient flows in agricultural systems and processes, reducing agricultural and urban runoff by diverse methods, and reducing N emissions from fossil fuel burning, but rates of recovery are highly variable among water bodies.
ReportDOI

Biomass as Feedstock for A Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply

TL;DR: The U.S. Department of Energy and the United States Department of Agriculture have both strongly committed to expanding the role of biomass as an energy source as mentioned in this paper, and they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries making a variety of fuels, chemicals, and other products.

Supporting Online Material for: Ethanol Can Contribute To Energy and Environmental Goals

TL;DR: This article evaluated six representative analyses of fuel ethanol and found that current corn ethanol technologies are much less petroleum-intensive than gasoline but have greenhouse gas emissions similar to those of gasoline, and that large-scale use of ethanol for fuel will almost certainly require cellulosic technology.
Journal ArticleDOI

Ethanol Can Contribute to Energy and Environmental Goals

TL;DR: It is already clear that large-scale use of ethanol for fuel will almost certainly require cellulosic technology and new metrics that measure specific resource inputs are developed, but further research into environmental metrics is needed.
Journal ArticleDOI

Diversity and productivity in a long-term grassland experiment

TL;DR: These results help resolve debate over biodiversity and ecosystem functioning, show effects at higher than expected diversity levels, and demonstrate, for these ecosystems, that even the best-chosen monocultures cannot achieve greater productivity or carbon stores than higher-diversity sites.
Related Papers (5)