scispace - formally typeset
Open AccessJournal ArticleDOI

Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

Reads0
Chats0
TLDR
Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-basedBiofuels.
Abstract
Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Biodiesel production from oleaginous microorganisms

TL;DR: Regulation mechanism of oil accumulation in microorganism and approach of making microbial diesel economically competitive with petrodiesel are discussed in this review.
Journal ArticleDOI

Net energy of cellulosic ethanol from switchgrass

TL;DR: Improved genetics and agronomics may further enhance energy sustainability and biofuel yield of switchgrass and improve net energy and economic costs based on known farm inputs and harvested yields.
Journal ArticleDOI

Genomics of cellulosic biofuels

TL;DR: Genomic information gathered from across the biosphere, including potential energy crops and microorganisms able to break down biomass, will be vital for improving the prospects of significant cellulosic biofuel production.
Journal ArticleDOI

Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks

TL;DR: The impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming, and it is indicated that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location.
Journal ArticleDOI

Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment

TL;DR: This paper comprehensively reviews the lignocellulosic wastes to bioethanol process with a focus on pretreatment methods, their mechanisms, advantages and disadvantages as well as the combinations of different pretreatment technologies.
References
More filters
Journal ArticleDOI

Nonpoint pollution of surface waters with phosphorus and nitrogen

TL;DR: In this article, a review of the available scientific information, they are confident that nonpoint pollution of surface waters with P and N could be reduced by reducing surplus nutrient flows in agricultural systems and processes, reducing agricultural and urban runoff by diverse methods, and reducing N emissions from fossil fuel burning, but rates of recovery are highly variable among water bodies.
ReportDOI

Biomass as Feedstock for A Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply

TL;DR: The U.S. Department of Energy and the United States Department of Agriculture have both strongly committed to expanding the role of biomass as an energy source as mentioned in this paper, and they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries making a variety of fuels, chemicals, and other products.

Supporting Online Material for: Ethanol Can Contribute To Energy and Environmental Goals

TL;DR: This article evaluated six representative analyses of fuel ethanol and found that current corn ethanol technologies are much less petroleum-intensive than gasoline but have greenhouse gas emissions similar to those of gasoline, and that large-scale use of ethanol for fuel will almost certainly require cellulosic technology.
Journal ArticleDOI

Ethanol Can Contribute to Energy and Environmental Goals

TL;DR: It is already clear that large-scale use of ethanol for fuel will almost certainly require cellulosic technology and new metrics that measure specific resource inputs are developed, but further research into environmental metrics is needed.
Journal ArticleDOI

Diversity and productivity in a long-term grassland experiment

TL;DR: These results help resolve debate over biodiversity and ecosystem functioning, show effects at higher than expected diversity levels, and demonstrate, for these ecosystems, that even the best-chosen monocultures cannot achieve greater productivity or carbon stores than higher-diversity sites.
Related Papers (5)