scispace - formally typeset
Journal ArticleDOI

Extreme oxygen sensitivity of electronic properties of carbon nanotubes

Philip G. Collins, +3 more
- 10 Mar 2000 - 
- Vol. 287, Iss: 5459, pp 1801-1804
TLDR
The results, although demonstrating that nanotubes could find use as sensitive chemical gas sensors, likewise indicate that many supposedly intrinsic properties measured on as-prepared nanotube may be severely compromised by extrinsic air exposure effects.
Abstract
The electronic properties of single-walled carbon nanotubes are shown here to be extremely sensitive to the chemical environment. Exposure to air or oxygen dramatically influences the nanotubes' electrical resistance, thermoelectric power, and local density of states, as determined by transport measurements and scanning tunneling spectroscopy. These electronic parameters can be reversibly "tuned" by surprisingly small concentrations of adsorbed gases, and an apparently semiconducting nanotube can be converted into an apparent metal through such exposure. These results, although demonstrating that nanotubes could find use as sensitive chemical gas sensors, likewise indicate that many supposedly intrinsic properties measured on as-prepared nanotubes may be severely compromised by extrinsic air exposure effects.

read more

Citations
More filters
Patent

Nanomaterial polymer compositions and uses thereof

TL;DR: In this paper, a silicone polymer and a nanomaterial are used for optical and sensing devices including but not limited to noise suppression, passive Q-switching, mode-locking, waveform shaping, optical switching, optical signal regeneration, phase conjugation or filter devices, dispersion compensation, wavelength conversion, a soliton stabilization, microcavity applications, interferometers; optical, magneto-optical or electrooptical modulation; and biochemical sensors and photodetectors.
Journal ArticleDOI

Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

TL;DR: It was found that the edge polar nature of the newly prepared EFGnPs without heteroatom doping into their basal plane played an important role in regulating the ORR efficiency with the electrocatalytic activity.
Journal ArticleDOI

Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field

TL;DR: Theoretical results are consistent with the recent experiments and suggest MoS2 as a potential material for gas sensing application because of its ability to be significantly modulated by a perpendicular electric field.
Journal ArticleDOI

Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple

TL;DR: It is shown that electrons transfer between the diamond and an electrochemical reduction/oxidation couple involving oxygen is responsible for the surface conductivity and also influences contact angles and zeta potentials.
Journal ArticleDOI

Two-Dimensional Nanostructured Materials for Gas Sensing

TL;DR: In this article, a review of the most recent advancements in utilization of various 2D nanomaterials for gas sensing is provided, where the focus is on the sensing performances provided by devices integrating 2D Nanostructures.
References
More filters
Journal ArticleDOI

Crystalline Ropes of Metallic Carbon Nanotubes

TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Book

Science of fullerenes and carbon nanotubes

TL;DR: In this paper, the authors present a detailed overview of the properties of Fullerenes and their properties in surface science applications, such as scanning tunnel microscopy, growth and fragmentation studies, and chemical synthesis.
Journal ArticleDOI

Storage of hydrogen in single-walled carbon nanotubes

TL;DR: In this article, a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs) under conditions that do not induce adsorption within a standard mesoporous activated carbon.
Journal ArticleDOI

New one-dimensional conductors: Graphitic microtubules.

TL;DR: It is predicted that carbon microtubules exhibit striking variations in electronic transport, from metallic to semiconducting with narrow and moderate band gaps, depending on the diameter of the tubule and on the degree of helical arrangement of the carbon hexagons.
Journal ArticleDOI

Individual single-wall carbon nanotubes as quantum wires

TL;DR: In this article, electrical transport measurements on individual single-wall nanotubes have been performed to confirm the theoretical predictions of single-walled nanotube quantum wires, and they have been shown to act as genuine quantum wires.
Related Papers (5)