scispace - formally typeset
Journal ArticleDOI

Fe, Cu-Coordinated ZIF-Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc–Air Batteries

Reads0
Chats0
TLDR
In this article, an Fe, Cu-coordinated ZIF-derived carbon framework (Cu@Fe-N-C) with a well-defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe2+ and Cu2+ during the growth of ZIF8, followed by pyrolysis.
Abstract
Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high-performance nonprecious-metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu-coordinated ZIF-derived carbon framework (Cu@Fe-N-C) with a well-defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe2+ and Cu2+ during the growth of ZIF-8, followed by pyrolysis. The obtained Cu@Fe-N-C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half-wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt-free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc–air batteries, Cu@Fe-N-C presents a higher peak power density of 92 mW cm−2 than that of Pt/C (74 mW cm−2) as well as excellent durability.

read more

Citations
More filters
Journal ArticleDOI

Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives

TL;DR: In this review, the recent advances in the application of MOFs in heterogeneous catalysis are discussed and the personal view on future research directions is wrapped up.
Journal ArticleDOI

Generation of Nanoparticle, Atomic-Cluster, and Single-Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc-Air Batteries

TL;DR: The spatial isolation of cobalt species on the atomic scale is reported by tuning the zinc dopant content in predesigned bimetallic Zn/Co zeolitic imidazole frameworks (ZnCo-ZIFs), which led to the synthesis of nanoparticles, atomic clusters, and single atoms of Co catalysts on N-doped porous carbon.
Journal ArticleDOI

Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies

TL;DR: In this article, a more practical point of view, the tests and experiments at the membrane electrode assembly (MEA) level are accentuated due to the fact that the rotating disk electrode (RDE) level performance cannot be transformed directly into the MEA level.
Journal ArticleDOI

Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications

TL;DR: In this paper, the authors comprehensively discuss the recent developments in advanced single-atom and dual-atom metal catalysts for the oxygen reduction reaction (ORR), including synthesis and characterization, reaction mechanisms and energy applications such as in fuel cells and metal-air batteries.
References
More filters
Journal ArticleDOI

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Journal ArticleDOI

High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt

TL;DR: A family of non–precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Journal Article

High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt

TL;DR: In this article, a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Journal ArticleDOI

Recent Advances in Electrocatalysts for Oxygen Reduction Reaction

TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Journal ArticleDOI

3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction

TL;DR: It is found that Fe(3)O(4)/N-GAs show a more positive onset potential, higher cathodic density, lower H(2)O-2) yield, and higher electron transfer number for the ORR in alkaline media than Fe( 3)O (4) NPs supported on N-doped carbon black or N- doped graphene sheets, highlighting the importance of the 3D macropores and high specific surface area of the GA support for
Related Papers (5)