scispace - formally typeset
Open AccessJournal ArticleDOI

Floquet topological insulators for sound

Reads0
Chats0
TLDR
It is shown that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.
Abstract
The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Exceptional points in optics and photonics.

TL;DR: The topic of exceptional points in photonics is reviewed and some of the possible exotic behavior that might be expected from engineering such systems are explored, as well as new angle of utilizing gain and loss as new degrees of freedom, in stark contrast with the traditional approach of avoiding these elements.
Journal ArticleDOI

Topological insulator laser: Experiments

TL;DR: This work demonstrates an all-dielectric magnet-free topological insulator laser, with desirable properties stemming from the topological transport of light in the laser cavity, and demonstrates higher slope efficiencies compared to those of the topologically trivial counterparts.
Journal ArticleDOI

Acoustic topological insulator and robust one-way sound transport

TL;DR: In this article, the acoustic analogue of a topological insulator is shown: a metamaterial exhibiting one-way sound transport along its edge, a graphene-like array of stainless-steel rods.
Journal ArticleDOI

Non-reciprocal photonics based on time modulation

TL;DR: In this article, the authors review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices and discuss the future of this exciting research field.
PatentDOI

Non-reciprocal lasing in topological cavities of arbitrary geometries

TL;DR: The experimental demonstration of lasing from topological cavities provides the opportunity to develop complex topological circuitry of arbitrary geometries for the integrated and robust generation and transport of photons in classical and quantum regimes.
References
More filters
Journal ArticleDOI

Colloquium: Topological insulators

TL;DR: In this paper, the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topologically insulators have been observed.
Journal ArticleDOI

Topological insulators and superconductors

TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Journal ArticleDOI

Quantum spin Hall effect in graphene

TL;DR: Graphene is converted from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator and the spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
Journal ArticleDOI

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

TL;DR: In this article, the quantum spin Hall (QSH) effect can be realized in mercury-cadmium telluride semiconductor quantum wells, a state of matter with topological properties distinct from those of conventional insulators.
Journal ArticleDOI

Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface

TL;DR: In this article, first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Bi2Se3, SbSe3 and BiSe3 were performed.
Related Papers (5)