scispace - formally typeset
Journal ArticleDOI

GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications

Sadao Adachi
- 01 Aug 1985 - 
- Vol. 58, Iss: 3
Reads0
Chats0
TLDR
In this article, a review of the properties of the Al x Ga1−x As/GaAs heterostructure system is presented, which can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4), lattice dynamic properties, (5) lattices thermal properties,(6) electronic-band structure, (7) external perturbation effects on the bandgap energy, (8) effective mass, (9) deformation potential, (10) static and
Abstract
The Al x Ga1−x As/GaAs heterostructure system is potentially useful material for high‐speed digital, high‐frequency microwave, and electro‐optic device applications Even though the basic Al x Ga1−x As/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J S Blakemore, J Appl Phys 5 3, R123 (1982)] The purpose of this review is (i) to obtain and clarify all the various material parameters of Al x Ga1−x As alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications A complete set of material parameters are considered in this review for GaAs, AlAs, and Al x Ga1−x As alloys The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs) The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic‐band structure, (7) external perturbation effects on the band‐gap energy, (8) effective mass, (9) deformation potential, (10) static and high‐frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Frohlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard’s rule well Other parameters, eg, electronic‐band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction However, some kinds of the material parameters, eg, lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid‐state physics Key properties of the material parameters for use in research work and a variety of Al x Ga1−x As/GaAs device applications are also discussed in detail

read more

Citations
More filters
Book ChapterDOI

Quantum Transport in Semiconductor Nanostructures

TL;DR: In this article, the authors describe the properties of Si-inversion layers in GaAs-AlGaAs Heterostructures and the Quantum Hall Effect in strong magnetic fields.
Journal ArticleDOI

When group-III nitrides go infrared: New properties and perspectives

TL;DR: In this paper, the bandgap of InN was revised from 1.9 eV to a much narrower value of 0.64 eV, which is the smallest bandgap known to date.
Book ChapterDOI

Quantum Transport in Semiconductor Nanostructures

TL;DR: In this article, the authors present a self-contained account of the three transport regimes in semiconductor nanostructures, namely ballistic transport, diffusive transport and ballistic transport.
Journal ArticleDOI

The photonic band edge laser: A new approach to gain enhancement

TL;DR: In this article, the authors showed that near the band edge of a one-dimensional photonic band gap structure the photon group velocity approaches zero, which implies an exceedingly long optical path length in the structure.
Journal ArticleDOI

Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport

TL;DR: In this article, Monte Carlo simulations of electron transport in seven semiconductors of the diamond and zinc-blende structure (Ge, Si, GaAs, InP, AlAs, AlP, InAs, GaP) and some of their alloys were performed at two lattice temperatures (77 and 300 K).
References
More filters
Journal ArticleDOI

Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys

TL;DR: In this paper, the thermal conductivities of mixed III-V compounds: indium arsenide-phosphide, gallium-indium arsenides and gallium antimonides are presented.
Journal ArticleDOI

Refractive index of AlxGa1−xAs between 1.2 and 1.8 eV

TL;DR: In this paper, the refractive indices of AlGa1−xAs samples prepared by liquid-phase epitaxy were determined from accurate double-beam reflectance measurements, and they were obtained for AlAs mole fractions between 0 ≤ x ≤ 0.38 in the spectral range 1.2-1.8 eV.
Journal ArticleDOI

Dielectric Classification of Crystal Structures, Ionization Potentials, and Band Structures

TL;DR: In this paper, it was shown that dielectrically defined average covalent and ionic energy gaps can be used to predict crystal structures and absolute band energies in crystals of formula $\mathrm{AB}$ with eight valence electrons per atom pair.
Journal ArticleDOI

High-field transport in wide-band-gap semiconductors

TL;DR: In this paper, the drift velocity in high electric fields was calculated for several wideband-gap semiconductors and SiC, diamond, and GaN hold promise for values above 2\ifmmode\times\else\texttimes\fi{10}^{7}$ cm/sec.