scispace - formally typeset
Journal ArticleDOI

GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications

Sadao Adachi
- 01 Aug 1985 - 
- Vol. 58, Iss: 3
Reads0
Chats0
TLDR
In this article, a review of the properties of the Al x Ga1−x As/GaAs heterostructure system is presented, which can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4), lattice dynamic properties, (5) lattices thermal properties,(6) electronic-band structure, (7) external perturbation effects on the bandgap energy, (8) effective mass, (9) deformation potential, (10) static and
Abstract
The Al x Ga1−x As/GaAs heterostructure system is potentially useful material for high‐speed digital, high‐frequency microwave, and electro‐optic device applications Even though the basic Al x Ga1−x As/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J S Blakemore, J Appl Phys 5 3, R123 (1982)] The purpose of this review is (i) to obtain and clarify all the various material parameters of Al x Ga1−x As alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications A complete set of material parameters are considered in this review for GaAs, AlAs, and Al x Ga1−x As alloys The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs) The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic‐band structure, (7) external perturbation effects on the band‐gap energy, (8) effective mass, (9) deformation potential, (10) static and high‐frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Frohlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard’s rule well Other parameters, eg, electronic‐band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction However, some kinds of the material parameters, eg, lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid‐state physics Key properties of the material parameters for use in research work and a variety of Al x Ga1−x As/GaAs device applications are also discussed in detail

read more

Citations
More filters
Journal ArticleDOI

Full momentum- and energy-resolved spectral function of a 2D electronic system.

TL;DR: A high-resolution method for measuring the full momentum- and energy-resolved electronic spectral function of a two-dimensional (2D) electronic system embedded in a semiconductor is demonstrated and signatures of many-body effects involving electron-phonon interactions, plasmons, polarons, and a phonon analog of the vacuum Rabi splitting in atomic systems are uncovered.
Journal ArticleDOI

A simple theoretical analysis of the effective electron mass in III-V, ternary and quaternary materials in the presence of light waves

TL;DR: In this article, a simple theoretical analysis of the effective electron mass (EEM) at the Fermi level for III-V, ternary and quaternary materials, on the basis of a newly formulated electron energy spectra in the presence of light waves whose unperturbed energy band structures are defined by the three-band model of Kane, is presented.
Journal ArticleDOI

The self-consistent calculation of a spherical quantum dot: A quantum genetic algorithm study

TL;DR: In this paper, the subband energy level, potential profile, and corresponding wave function and chemical potential for different temperatures and donor concentrations in a spherical quantum dot self-consistently were calculated.
Journal ArticleDOI

Semiempirical self-energy corrections to LDA bands of semiconductors, and a scaling law for the scissor operator

TL;DR: In this article, a semi-empirical approach to the evaluation of corrections to LDA electronic states and effective masses in semiconductors is described, and applications to GaAs, AlAs, Ge, Ga1-xAlxAs VCA alloys are presented.
Journal ArticleDOI

Frequency response and modeling of resonant-cavity separate absorption, charge, and multiplication avalanche photodiodes

TL;DR: In this paper, a theoretical model incorporating the mechanism of resonant absorption of the multiple reflected lightwaves is presented for the frequency response of RC separate absorption, charge, and multiplication (SACM) avalanche photodiodes (APDs).
References
More filters
Proceedings Article

Physics of semiconductor devices

S. M. Sze
Book

Physical properties of crystals

John F. Nye
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Journal ArticleDOI

Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials

TL;DR: In this article, a single effectiveoscillator fit was used to analyze refractive-index dispersion data below the interband absorption edge in more than 100 widely different solids and liquids.
Journal ArticleDOI

Physics of Thin Films