scispace - formally typeset
Journal ArticleDOI

Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions

Reads0
Chats0
TLDR
The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.
Abstract
Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems--but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers. In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties. Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far. The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.

read more

Citations
More filters
Journal ArticleDOI

A review of metasurfaces: physics and applications.

TL;DR: Recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible is reviewed, with opinions of opportunities and challenges in this rapidly developing research field.
Journal ArticleDOI

An ultrathin invisibility skin cloak for visible light

TL;DR: In this article, an ultrathin invisibility skin cloak is proposed to cover a 3D arbitrarily shaped object by complete restoration of the phase of the reflected light at 730-nanometer wavelength.
Journal ArticleDOI

Plasmonic meta-atoms and metasurfaces

TL;DR: In this paper, the authors describe recent progress in the area of metasurfaces formed from plasmonic meta-atoms and identify some areas ripe for future research and indicate likely avenues for future device development.
Journal ArticleDOI

Subwavelength dielectric resonators for nonlinear nanophotonics

TL;DR: This work implements a new physical mechanism for suppressing radiative losses of individual nanoscale resonators to engineer special modes with high quality factors: optical bound states in the continuum (BICs), and demonstrates that an individual subwavelength dielectric resonator hosting a BIC mode can boost nonlinear effects increasing second-harmonic generation efficiency.
Journal ArticleDOI

Nonlinear photonic metasurfaces

TL;DR: In this article, the design of nonlinear photonic metasurfaces is discussed, in particular the criteria for choosing the materials and symmetries of the meta-atoms.
References
More filters
Journal ArticleDOI

Negative Refraction Makes a Perfect Lens

TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Journal ArticleDOI

Controlling Electromagnetic Fields

TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Journal ArticleDOI

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction

TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Book

Advanced engineering electromagnetics

TL;DR: In this article, the authors introduce the notion of circular cross-section waveguides and cavities, and the moment method is used to compute the wave propagation and polarization.
Journal ArticleDOI

Optical Conformal Mapping

TL;DR: A general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics is developed, which can be applied to escape detection by other electromagnetic waves or sound.
Related Papers (5)