scispace - formally typeset
Journal ArticleDOI

Hallmarks of 'BRCAness' in sporadic cancers

TLDR
There are properties that define 'BRCAness' — that is, traits that some sporadic cancers share with those occurring in either BRCA1- or BRCa2-mutation carriers, which might have important implications for the clinical management of these cancers.
Abstract
Germline mutations in the BRCA1, BRCA2 and Fanconi anaemia genes confer cancer susceptibility, and the proteins encoded by these genes have distinct functions in related DNA-repair processes. Emerging evidence indicates that these processes are disrupted by numerous mechanisms in sporadic cancers. Collectively, there are properties that define 'BRCAness' — that is, traits that some sporadic cancers share with those occurring in either BRCA1- or BRCA2-mutation carriers. These common properties might have important implications for the clinical management of these cancers.

read more

Citations
More filters
Journal ArticleDOI

The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data

TL;DR: The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications.
Journal ArticleDOI

Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy

TL;DR: BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis, illustrating how different pathways cooperate to repair damage.
Journal ArticleDOI

Triple-negative breast cancer.

TL;DR: Triple-negative breast cancer, so called because it lacks expression of the estrogen receptor, progesterone receptor, and HER2, is often, but not always, a basal-like breast cancer.
Journal ArticleDOI

American Society of Clinical Oncology 2007 Update of Recommendations for the Use of Tumor Markers in Breast Cancer

TL;DR: Thirteen categories of breast tumor markers were considered, six of which were new for the guideline, and certain multiparameter gene expression assays not all applications for these markers were supported, however.
References
More filters
Journal ArticleDOI

The hallmarks of cancer.

TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.
Journal ArticleDOI

Molecular portraits of human breast tumours

TL;DR: Variation in gene expression patterns in a set of 65 surgical specimens of human breast tumours from 42 different individuals were characterized using complementary DNA microarrays representing 8,102 human genes, providing a distinctive molecular portrait of each tumour.
Journal ArticleDOI

Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications

TL;DR: Survival analyses on a subcohort of patients with locally advanced breast cancer uniformly treated in a prospective study showed significantly different outcomes for the patients belonging to the various groups, including a poor prognosis for the basal-like subtype and a significant difference in outcome for the two estrogen receptor-positive groups.
Journal ArticleDOI

Gene expression profiling predicts clinical outcome of breast cancer

TL;DR: DNA microarray analysis on primary breast tumours of 117 young patients is used and supervised classification is applied to identify a gene expression signature strongly predictive of a short interval to distant metastases (‘poor prognosis’ signature) in patients without tumour cells in local lymph nodes at diagnosis, providing a strategy to select patients who would benefit from adjuvant therapy.
Journal ArticleDOI

The fundamental role of epigenetic events in cancer

TL;DR: This review discusses patterns of DNA methylation and chromatin structure in neoplasia and the molecular alterations that might cause them and/or underlie altered gene expression in cancer.
Related Papers (5)