scispace - formally typeset
Journal ArticleDOI

Heat Transfer in Microchannels—2012 Status and Research Needs

TLDR
In this paper, a critical review of the current state of research in microchannels is presented with a focus on the future research needs, including single-phase gas flow, enhancement in singlephase liquid flow and flow boiling, flow boiling instability, condensation, electronics cooling, and microscale heat exchangers.
Abstract
Heat transfer and fluid flow in microchannels have been topics of intense research in the past decade. A critical review of the current state of research is presented with a focus on the future research needs. After providing a brief introduction, the paper addresses six topics related to transport phenomena in microchannels: single-phase gas flow, enhancement in single-phase liquid flow and flow boiling, flow boiling instability, condensation, electronics cooling, and microscale heat exchangers. After reviewing the current status, future research directions are suggested. Concerning gas phase convective heat transfer in microchannels, the antagonist role played by the slip velocity and the temperature jump that appear at the wall are now clearly understood and quantified. It has also been demonstrated that the shear work due to the slipping fluid increases the effect of viscous heating on heat transfer. On the other hand, very few experiments support the theoretical models and a significant effort should be made in this direction, especially for measurement of temperature fields within the gas in microchannels, implementing promising recent techniques such as molecular tagging thermometry (MTT). The single-phase liquid flow in microchannels has been established to behave similar to the macroscale flows. The current need is in the area of further enhancing the performance. Progress on implementation of flow boiling in microchannels is facing challenges due to its lower heat transfer coefficients and critical heat flux (CHF) limits. An immediate need for breakthrough research related to these two areas is identified. Discussion about passive and active methods to suppress flow boiling instabilities is presented. Future research focus on instability research is suggested on developing active closed loop feedback control methods, extending current models to better predict and enable superior control of flow instabilities. Innovative high-speed visualization and measurement techniques have led to microchannel condensation now being studied as a unique process with its own governing influences. Further work is required to develop widely applicable flow regime maps that can address many fluid types and geometries. With this, condensation heat transfer models can progress from primarily annular flow based models with some adjustments using dimensionless parameters to those that can directly account for transport in intermittent and other flows, and the varying influences of tube shape, surface tension and fluid property differences over much larger ranges than currently possible. Electronics cooling continues to be the main driver for improving thermal transport processes in microchannels, while efforts are warranted to develop high performance heat exchangers with microscale passages. Specific areas related to enhancement, novel configurations, nanostructures and practical implementation are expected to be the research focus in the coming years.

read more

Citations
More filters
Journal ArticleDOI

A critical review of traditional and emerging techniques and fluids for electronics cooling

TL;DR: In this paper, a critical review of traditional and emerging cooling methods as well as coolants for electronics is provided, summarizing traditional coolants, heat transfer properties and performances of potential new coolants such as nanofluids are also reviewed and analyzed.
Journal ArticleDOI

Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids

TL;DR: In this paper, a review of micro-and minichannel heat exchangers as heat sinks and heat exchanger has been presented, and the persisting lacunae of this technology drawn from the review have been pointed out.
Journal ArticleDOI

Dropwise Condensation on Micro- and Nanostructured Surfaces

TL;DR: A review of recent developments in the area of surface-enhanced dropwise condensation can be found in this paper, where the development of fabrication techniques to create surface structures at the micro- and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena.
Journal ArticleDOI

Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study

TL;DR: In this article, an enhanced microchannel heat sink with sectional oblique fin is used to modulate the flow in contrast to continuous straight fin, which resulted in better heat transfer and a comparable pressure drop.
Journal ArticleDOI

Review and Projections of Integrated Cooling Systems for Three-Dimensional Integrated Circuits

TL;DR: In this article, the authors provide a vision for codesigning 3D IC architecture and integrated cooling systems and provide a new level of codesign approach with circuit, software and thermal designers working together.
References
More filters
Journal ArticleDOI

High-performance heat sinking for VLSI

TL;DR: In this paper, a water-cooled integral heat sink for silicon integrated circuits has been designed and tested at a power density of 790 W/cm2, with a maximum substrate temperature rise of 71°C above the input water temperature.
Journal ArticleDOI

Heat transfer characteristics of nanofluids: a review

TL;DR: A review on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows is presented in this article, where the authors identify opportunities for future research.
Journal ArticleDOI

Fundamental issues related to flow boiling in minichannels and microchannels

TL;DR: In this article, the effects of the channel size on the flow patterns and heat transfer and pressure drop performance are reviewed in small hydraulic diameter channels, and the fundamental questions related to the presence of nucleate boiling and characteristics of flow boiling in microchannels and minichannels in comparison to that in the conventional channel sizes (3 mm and above) are addressed.
Related Papers (5)