scispace - formally typeset
Open AccessJournal ArticleDOI

High-Performance Hybrid Silicon and Lithium Niobate Mach-Zehnder Modulators for 100 Gbit/s and Beyond

Reads0
Chats0
TLDR
In this article, a Mach-Zehnder modulator with high-contrast waveguide based on a Silicon and Lithium Niobate hybrid integration platform has been demonstrated for high-speed, energy efficient and cost-effective optical communication networks.
Abstract
Optical modulators are at the heart of optical communication links Ideally, they should feature low insertion loss, low drive voltage, large modulation bandwidth, high linearity, compact footprint and low manufacturing cost Unfortunately, these criteria have only been achieved on separate occasionsBased on a Silicon and Lithium Niobate hybrid integration platform, we demonstrate Mach-Zehnder modulators that simultaneously fulfill these criteria The presented device exhibits an insertion loss of 25 dB, voltage-length product of 22 Vcm, high linearity, electro-optic bandwidth of at least 70 GHz and modulation rates up to 112 Gbit/s The high-performance modulator is realized by seamless integration of high-contrast waveguide based on Lithium Niobate - the most mature modulator material - with compact, low-loss silicon circuits The hybrid platform demonstrated here allows for the combination of 'best-in-breed' active and passive components, opening up new avenues for enabling future high-speed, energy efficient and cost-effective optical communication networks

read more

Citations
More filters
Journal ArticleDOI

Integrated photonic quantum technologies

TL;DR: In this paper, the authors summarized the advances in integrated photonic quantum technologies and its demonstrated applications, including quantum communications, simulations of quantum chemical and physical systems, sampling algorithms, and linear-optic quantum information processing.
Journal ArticleDOI

Photonics for artificial intelligence and neuromorphic computing

TL;DR: In this paper, the authors review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges.
Journal ArticleDOI

Photonics for artificial intelligence and neuromorphic computing

TL;DR: Recent advances in integrated photonic neuromorphic neuromorphic systems are reviewed, current and future challenges are discussed, and the advances in science and technology needed to meet those challenges are outlined.
Journal ArticleDOI

Integrated Photonic Quantum Technologies

TL;DR: This Review summarizes the advances in integrated photonic quantum technologies and its demonstrated applications, including quantum communications, simulations of quantum chemical and physical systems, sampling algorithms, and linear-optic quantum information processing.
Journal ArticleDOI

Hybrid integrated quantum photonic circuits.

TL;DR: The Review summarizes the progress of hybrid quantum photonics integration in terms of its important design considerations and fabrication approaches, and highlights some successful realizations of key physical resources for building integrated quantum devices, such as quantum teleporters, quantum repeaters and quantum simulators.
References
More filters
Journal ArticleDOI

A graphene-based broadband optical modulator

TL;DR: Graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.
Journal ArticleDOI

Linear optical quantum computing with photonic qubits

TL;DR: In this article, the authors reviewed the original theory and its improvements, and a few examples of experimental two-qubit gates are given, and the use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
Journal ArticleDOI

Micrometre-scale silicon electro-optic modulator

TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Journal ArticleDOI

Silicon optical modulators

TL;DR: The techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future are discussed.
Journal ArticleDOI

Device Requirements for Optical Interconnects to Silicon Chips

TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Related Papers (5)