scispace - formally typeset
Journal ArticleDOI

Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots

Dengyu Pan, +3 more
- 09 Feb 2010 - 
- Vol. 22, Iss: 6, pp 734-738
Reads0
Chats0
TLDR
This work reports on a novel and simple hydrothermal approach for the cutting of GSs into surface-functionalized GQDs, which were found to exhibit bright blue photoluminescence (PL), which has never been observed in GSs and GNRs owing to their large lateral sizes.
Abstract
2010 WILEY-VCH Verlag Gm Graphene-based materials are promising building blocks for future nanodevices owing to their superior electronic, thermal, and mechanical properties as well as their chemical stability. However, currently available graphene-based materials produced by typical physical and chemical routes, including micromechanical cleavage, reduction of exfoliated graphene oxide (GO), and solvothermal synthesis, are generally micrometer-sized graphene sheets (GSs), which limits their direct application in nanodevices. In this context, it has become urgent to develop effective routes for cutting large GSs into nanometer-sized pieces with a well-confined shape, such as graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). Theoretical and experimental studies have shown that narrow GNRs (width less than ca. 10 nm) exhibit substantial quantum confinement and edge effects that render GNRs semiconducting. By comparison, GQDs possess strong quantum confinement and edge effects when their sizes are down to 100 nm. If their sizes are reduced to ca. 10 nm, comparable with the widths of semiconducting GNRs, the two effects will become more pronounced and, hence, induce new physical properties. Up to now, nearly all experimental work on GNRs and GQDs has focused on their electron transportation properties. Little work has been done on the optical properties that are directly associated with the quantum confinement and/or edge effects. Most GNRand GQD-based electronic devices have been fabricated by lithography techniques, which can realize widths and diameters down to ca. 20 nm. This physical approach, however, is limited by the need for expensive equipment and especially by difficulties in obtaining smooth edges. Alternative chemical routes can overcome these drawbacks. Moreover, surface functionalization can be realized easily. Li et al. first reported a chemical route to functionalized and ultrasmooth GNRs with widths ranging from 50 nm to sub-10 nm. Very recently, Kosynkin et al. reported a simple solution-based oxidative process for producing GNRs by lengthwise cutting and unraveling of multiwalled carbon nanotube (CNT) side walls. Yet, no chemical routes have been reported so far for preparing functionalized GQDs with sub-10 nm sizes. Here, we report on a novel and simple hydrothermal approach for the cutting of GSs into surface-functionalized GQDs (ca. 9.6-nm average diameter). The functionalized GQDs were found to exhibit bright blue photoluminescence (PL), which has never been observed in GSs and GNRs owing to their large lateral sizes. The blue luminescence and new UV–vis absorption bands are directly induced by the large edge effect shown in the ultrafine GQDs. The starting material was micrometer-sized rippled GSs obtained by thermal reduction of GO sheets. Figure 1a shows a typical transmission electron microscopy (TEM) image of the pristine GSs. Their (002) interlayer spacing is 3.64 A (Fig. 1c), larger than that of bulk graphite (3.34 A). Before the hydrothermal treatment, the GSs were oxidized in concentrated H2SO4 and HNO3. After the oxidization treatment the GSs became slightly smaller (50 nm–2mm) and the (002) spacing slightly increased to 3.85 A (Fig. 1c). During the oxidation, oxygen-containing functional groups, including C1⁄4O/COOH, OH, and C O C, were introduced at the edge and on the basal plane, as shown in the Fourier transform infrared (FTIR) spectrum (Fig. 1d). The presence of these groups makes the GSs soluble in water. A series of more marked changes took place after the hydrothermal treatment of the oxidized GSs at 200 8C. First, the (002) spacing was reduced to 3.43 A (Fig. 1c), very close to that of bulk graphite, indicating that deoxidization occurs during the hydrothermal process. The deoxidization is further confirmed by the changes in the FTIR and C 1s X-ray photoelectron spectroscopy (XPS) spectra. After the hydrothermal treatment, the strongest vibrational absorption band of C1⁄4O/COOH at 1720 cm 1 became very weak and the vibration band of epoxy groups at 1052 cm 1 disappeared (Fig. 1d). In the XPS C 1s spectra of the oxidized and hydrothermally reduced GSs (Fig. 2a), the signal at 289 eV assigned to carboxyl groups became weak after the hydrothermal treatment, whereas the sp carbon peak at 284.4 eV was almost unchanged. Figure 2b shows the Raman spectrum of the reduced GSs. A G band at 1590 cm 1 and a D band at 1325 cm 1 were observed with a large intensity ratio ID/IG of 1.26. Second, the size of the GSs decreased dramatically and ultrafine GQDswere isolated by a dialysis process. Figure 3 shows typical TEM and atomic force microscopy (AFM) images of the GQDs. Their diameters are mainly distributed in the range of 5–13 nm (9.6 nm average diameter). Their topographic heights are mostly between 1 and 2 nm, similar to those observed in functionalized GNRs with 1–3 layers. More than 85% of the GQDs consist of 1–3 layers.

read more

Citations
More filters
Journal ArticleDOI

Photon Reabsorption and Nonradiative Energy-Transfer-Induced Quenching of Blue Photoluminescence from Aggregated Graphene Quantum Dots

TL;DR: In this paper, the photoluminescence (PL) from aggregated graphene quantum dots (GQDs) was studied at different concentrations, and it was shown that the intensity of green emission linearly depended on the concentration of GQDs, whereas the blue emission was below the linear relationship, indicating a concentration-induced partial quenching of blue PL.
Journal ArticleDOI

Simple and Cost-Effective Synthesis of Fluorescent Graphene Quantum Dots from Honey: Application as Stable Security Ink and White-Light Emission

TL;DR: A simple, cost-effective method is reported for the synthesis of GQDs from easily available bioresource-honey (honey made by bees using nectar from fl owers) due to its sustainability, carbohydrate content, and easy availability.
Journal ArticleDOI

Solvent dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells

TL;DR: The results indicate the GQD edge site dependent cell viability, for the first time, will be useful for the development of highly fluorescent GQDs with specific edge structure and their exploration in the field of bio-imaging, bio-sensing, and drug delivery applications.
Journal ArticleDOI

Graphene Quantum Dots Assembled with Metalloporphyrins for "Turn on" Sensing of Hydrogen Peroxide and Glucose.

TL;DR: The GQDs-based optical sensing approach described here has the potential to be highly versatile for other target analytes and can be extended to the detection of glucose in combination with the specific catalytic effect of glucose oxidase (GOx) through the oxidation of glucose and formation of H2 O2.
Journal ArticleDOI

Synthesis of blue light-emitting graphene quantum dots and their application in flexible nonvolatile memory

TL;DR: In this paper, a facile method to prepare graphene quantum dots (GQDs) from double-walled carbon nanotube with blue light emission in a chlorobenzene solution, which enabled the preparation of GQD-polymer hybrid nanocomposite.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Processable aqueous dispersions of graphene nanosheets

TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Journal ArticleDOI

Energy band-gap engineering of graphene nanoribbons.

TL;DR: It is found that the energy gap scales inversely with the ribbon width, thus demonstrating the ability to engineer the band gap of graphene nanostructures by lithographic processes.
Journal ArticleDOI

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors

TL;DR: A chemical route to produce graphene nanoribbons with width below 10 nanometers was developed, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics.
Related Papers (5)