scispace - formally typeset
Proceedings ArticleDOI

Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers

Norman P. Jouppi
- Vol. 18, pp 364-373
TLDR
In this article, a hardware technique to improve the performance of caches is presented, where a small fully-associative cache between a cache and its refill path is used to place prefetched data and not in the cache.
Abstract
Projections of computer technology forecast processors with peak performance of 1,000 MIPS in the relatively near future. These processors could easily lose half or more of their performance in the memory hierarchy if the hierarchy design is based on conventional caching techniques. This paper presents hardware techniques to improve the performance of caches.Miss caching places a small fully-associative cache between a cache and its refill path. Misses in the cache that hit in the miss cache have only a one cycle miss penalty, as opposed to a many cycle miss penalty without the miss cache. Small miss caches of 2 to 5 entries are shown to be very effective in removing mapping conflict misses in first-level direct-mapped caches.Victim caching is an improvement to miss caching that loads the small fully-associative cache with the victim of a miss and not the requested line. Small victim caches of 1 to 5 entries are even more effective at removing conflict misses than miss caching.Stream buffers prefetch cache lines starting at a cache miss address. The prefetched data is placed in the buffer and not in the cache. Stream buffers are useful in removing capacity and compulsory cache misses, as well as some instruction cache conflict misses. Stream buffers are more effective than previously investigated prefetch techniques at using the next slower level in the memory hierarchy when it is pipelined. An extension to the basic stream buffer, called multi-way stream buffers, is introduced. Multi-way stream buffers are useful for prefetching along multiple intertwined data reference streams.Together, victim caches and stream buffers reduce the miss rate of the first level in the cache hierarchy by a factor of two to three on a set of six large benchmarks.

read more

Content maybe subject to copyright    Report

Citations
More filters
Patent

System for restricted cache access during data transfers and method thereof

TL;DR: In this article, a cache access policy is defined as an access restriction to particular cache partitions, such as a restriction to one or more particular cache ways, or lines, during data transfer operation associated with the instruction.
Proceedings ArticleDOI

CATCH: a mechanism for dynamically detecting Cache-Content-Duplication and its application to instruction caches

TL;DR: It is shown that CCD is a frequent phenomenon and that an idealized duplication- detection mechanism for instruction caches has the potential to increase performance of an out-of-order processor, with a 2-way eight instruction per block 16 KB instruction cache, often by more than 5% and up to 20%.
Proceedings ArticleDOI

Miss reduction in embedded processors through dynamic, power-friendly cache design

TL;DR: A new data cache design for use in modern high-performance embedded processors that will dynamically improve execution time, power efficiency, and determinism within the system is explored.
Proceedings ArticleDOI

An Adaptive Data Prefetcher for High-Performance Processors

TL;DR: An Algorithm-level Feedback-controlled Adaptive (AFA) data prefetcher is proposed, based on the Data-Access History Cache, that provides an algorithm-level adaptation and is capable of dynamically adapting to appropriate prefetching algorithms at runtime.

Transactional Value Prediction

TL;DR: The preliminary model, -TVP, does not alter the underlying cache coherence protocol beyond what is already present in hardware transactional memory, and can dramatically increase throughput in the presence of false sharing, while incurring little overhead in its absence.
References
More filters
Journal ArticleDOI

Cache Memories

TL;DR: Specific aspects of cache memories investigated include: the cache fetch algorithm (demand versus prefetch), the placement and replacement algorithms, line size, store-through versus copy-back updating of main memory, cold-start versus warm-start miss ratios, mulhcache consistency, the effect of input /output through the cache, the behavior of split data/instruction caches, and cache size.

Why Aren't Operating Systems Getting Faster As Fast as Hardware?

TL;DR: This note evaluates several hardware platforms and operating systems using a set of benchmarks that test memory bandwidth and various operating system features such as kernel entry/exit and file systems to conclude that operating system performance does not seem to be improving at the same rate as the base speed of the underlying hardware.
Journal ArticleDOI

Available instruction-level parallelism for superscalar and superpipelined machines

TL;DR: A parameterizable code reorganization and simulation system was developed and used to measure instruction-level parallelism and the average degree of superpipelining metric is introduced, suggesting that this metric is already high for many machines.
Journal ArticleDOI

Sequential Program Prefetching in Memory Hierarchies

TL;DR: It is shown that prefetching all memory references in very fast computers can increase the effective CPU speed by 10 to 25 percent.
Proceedings ArticleDOI

On the inclusion properties for multi-level cache hierarchies

TL;DR: The inclusion property is essential in reducing the cache coherence complexity for multiprocessors with multilevel cache hierarchies and a new inclusion-coherence mechanism for two-level bus-based architectures is proposed.