scispace - formally typeset
Open AccessJournal ArticleDOI

Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells

Reads0
Chats0
TLDR
The computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.
Abstract
CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current-voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MA(+) rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells.

TL;DR: A simple vacuum flash–assisted solution processing method is devised to obtain shiny, smooth, crystalline perovskite films of high electronic quality over large areas, which enables the realization of highly efficient large-area PSCs for practical deployment.
Journal ArticleDOI

Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion.

TL;DR: An insight into the analogies, state-of-the-art technologies, concepts, and prospects under the umbrella of perovskite materials (both inorganic-organic hybrid halideperovskites and ferroelectric perovkites) for future multifunctional energy conversion and storage devices is provided.
Journal ArticleDOI

Mesoporous materials for energy conversion and storage devices

TL;DR: A review of mesoporous materials can be found in this paper, where the authors summarize the primary methods for preparing mesopore materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells.
Journal ArticleDOI

The rapid evolution of highly efficient perovskite solar cells

TL;DR: The perovskite solar cells (PSCs) have attracted much attention because of their rapid rise to 22% efficiencies as discussed by the authors, which could revolutionize the photovoltaic industry.
Journal ArticleDOI

Cs 2 AgBiBr 6 single-crystal X-ray detectors with a low detection limit

TL;DR: In this article, a solution-processed double perovskite Cs2AgBiBr6 single crystals are used to make a sensitive X-ray detector with a minimum detectable dose rate as low as 59.7 nGyair's−1.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells

TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Related Papers (5)