scispace - formally typeset
Journal ArticleDOI

Iron Borophosphate as a Potential Cathode for Lithium- and Sodium-Ion Batteries

Reads0
Chats0
TLDR
In this article, Li-containing iron borophosphate with a chiral 65 helical channel structure has been shown to be electrochemically active as the cathode for both Li- and Na-ion batteries.
Abstract
Lithium iron borophosphate, Li0.8Fe(H2O)2[BP2O8]·H2O, with a chiral 65 helical channel structure has been shown to be electrochemically active as the cathode for both Li- and Na-ion batteries. We report here, for the first time, synthesis of the illusive Li-containing iron borophosphate of a well-known structure type by employing a hydrothermal synthesis route. The compound has been characterized by single-crystal X-ray diffraction, magnetic measurement, and Mossbauer spectroscopy, which unequivocally prove the mixed valency of Fe2+/3+. The compound exhibits a sloppy voltage profile reminiscent of single-phase solid-solution-type behavior on electrochemical lithium and sodium insertion in the voltage range of 2.1–4.0 V and 1.6–4.0 V, respectively. The pure single-phase oxidized end-member Fe(H2O)2[BP2O8]·H2O was synthesized by chemical delithiation of the as-synthesized compound, and the structure was solved by ab initio methods, followed by Rietveld refinement of the synchrotron powder X-ray diffraction ...

read more

Citations
More filters
Journal ArticleDOI

Recent Progress in Electrode Materials for Sodium-Ion Batteries

TL;DR: In this paper, a review of recent progress on electrode materials for NIBs, including the discovery of new electrode materials and their Na storage mechanisms, is briefly reviewed, and efforts to enhance the electrochemical properties of NIB electrode materials as well as the challenges and perspectives involving these materials are discussed.
Journal ArticleDOI

Polyanionic Insertion Materials for Sodium-Ion Batteries

TL;DR: In this paper, an overview of recent progress in polyanionic framework compounds, with emphasis on high-voltage candidates consisting of earth abundant elements, is given, guided by ternary phase diagrams, recently discovered and potential cathode candidates are discussed gauging their performance, current status, and future perspectives.
Journal ArticleDOI

Sodium-Ion Batteries (a Review)

TL;DR: In this article, the state-of-the-art in the studies of sodium-ion batteries is discussed in comparison with their deeper developed lithium-ion analogs, and the principal problem hindering the development of competitive sodium ion batteries is the low effectiveness of the electrode materials at hand.
Journal ArticleDOI

Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts

Abstract: Their wide availability in nature, low cost, high reactivity, and low toxicity make Fe-based catalysts versatile in various catalysis fields, including photocatalysis, Fenton-like reaction, electrocatalysis, Li-ion batteries (LIBs), Fischer–Tropsch synthesis (FTS), biomass conversion, N2O decomposition and etc. Mossbauer spectroscopy, a powerful technique that is able to give account of structural features for all iron species taking part in the catalysis process, is considered to be a crucial technique for determining catalyst phase, identifying active site, and investigating correlations between catalytic behavior and the coordination structure of catalysts, which are highly desirable for clarifying the catalytic mechanisms. Each kind of Fe-based materials could be functionalized in the most suitable catalysis field, wherever Mossbauer technique may play a unique role. For instance, Fe-N-C based materials are extensively investigated as electrocatalysts for oxygen reduction reaction and Mossbauer spectroscopy application in this field has been utilized to identify the chemical nature of the active site on the Fe-N-C catalyst. Iron carbides are considered as the most active phase for FTS and Mossbauer technique is widely applied in determining the chemical phase of catalysts. Fe-based silicates, phosphates or polyanionic compounds are recognized as promising cathode materials for LIBs, for which Mossbauer technique has been mainly applied for tracking of the oxidation state and coordination environment change of Fe between charged and discharged states of the batteries. Similar phenomena can also be found in other catalysis fields. To give a clear understanding of which field is most suitable for a certain Fe-based catalyst and the best role of the Mossbauer technique in a certain catalysis field associated with the investigation of the mechanism, in this review, the recent advances of applying Mossbauer technique in catalysis are thoroughly summarized, including results from environmental catalysis and energy catalysis. Remarkable cases of study are highlighted and brief insight into applying Mossbauer technique for various Fe-based materials in their special catalysis field is presented. Finally, the trends for future potential applications of Mossbauer technique are discussed.
References
More filters
Journal ArticleDOI

A short history of SHELX

TL;DR: This paper could serve as a general literature citation when one or more of the open-source SH ELX programs (and the Bruker AXS version SHELXTL) are employed in the course of a crystal-structure determination.
Journal ArticleDOI

Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries

TL;DR: In this article, the authors showed that a reversible loss in capacity with increasing current density appears to be associated with a diffusion-limited transfer of lithium across the two-phase interface.
Journal ArticleDOI

Na-ion batteries, recent advances and present challenges to become low cost energy storage systems

TL;DR: In this paper, a review of Na-ion battery materials is presented, with the aim of providing a wide view of the systems that have already been explored and a starting point for the new research on this battery technology.
Journal ArticleDOI

GSAS-II: the genesis of a modern open-source all purpose crystallography software package

TL;DR: The newly developed GSAS-II software is a general purpose package for data reduction, structure solution and structure refinement that can be used with both single-crystal and powder diffraction data from both neutron and X-ray sources, including laboratory and synchrotron sources, collected on both two- and one-dimensional detectors.
Journal ArticleDOI

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries

TL;DR: In this paper, both negative and positive electrode materials in NIB are briefly reviewed, and it is concluded that cost-effective NIB can partially replace Li-ion batteries, but requires further investigation and improvement.
Related Papers (5)