scispace - formally typeset
Journal ArticleDOI

Label-free biosensors based on aptamer-modified graphene field-effect transistors.

Reads0
Chats0
TLDR
A label-free immunosensor based on an aptamer-modified graphene field-effect transistor (G-FET) that showed selective electrical detection of IgE protein and the dissociation constant was estimated to be 47 nM, indicating good affinity and the potential for G- FETs to be used in biological sensors.
Abstract
A label-free immunosensor based on an aptamer-modified graphene field-effect transistor (G-FET) is demonstrated. Immunoglobulin E (IgE) aptamers with an approximate height of 3 nm were successfully immobilized on a graphene surface, as confirmed by atomic force microscopy. The aptamer-modified G-FET showed selective electrical detection of IgE protein. From the dependence of the drain current variation on the IgE concentration, the dissociation constant was estimated to be 47 nM, indicating good affinity and the potential for G-FETs to be used in biological sensors.

read more

Citations
More filters
Journal ArticleDOI

25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress

TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Journal ArticleDOI

Biological and chemical sensors based on graphene materials

TL;DR: This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection and emphasizes on the underlying detection (or signal transduction) mechanisms.
Journal ArticleDOI

Biomedical Applications of Graphene and Graphene Oxide

TL;DR: Recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications are reviewed.
Journal ArticleDOI

Recent advances in graphene-based biosensors

TL;DR: This review discusses the application of graphene for the detection of glucose, Cyt-c, NADH, Hb, cholesterol, AA, UA, DA, and H(2)O(2).
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase

TL;DR: High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species.
Journal ArticleDOI

In vitro selection of RNA molecules that bind specific ligands.

TL;DR: Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules.
Journal ArticleDOI

Detection of individual gas molecules adsorbed on graphene

TL;DR: In this paper, it was shown that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface.
Related Papers (5)