scispace - formally typeset
Journal ArticleDOI

Long-range photoinduced electron transfer through a DNA helix

Reads0
Chats0
TLDR
The stacked aromatic heterocycles of the DNA duplex therefore serve as an efficient medium for coupling electron donors and acceptors over very long distances.
Abstract
Rapid photoinduced electron transfer is demonstrated over a distance of greater than 40 angstroms between metallointercalators that are tethered to the 5' termini of a 15-base pair DNA duplex. An oligomeric assembly was synthesized in which the donor is Ru(phen)2dppz2+ (phen, phenanthroline, and dppz, dipyridophenazine) and the acceptor is Rh(phi)2phen3+ (phi, phenanthrenequinone diimine). These metal complexes are intercalated either one or two base steps in from the helix termini. Although the ruthenium-modified oligonucleotide hybridized to an unmodified complement luminesces intensely, the ruthenium-modified oligomer hybridized to the rhodium-modified oligomer shows no detectable luminescence. Time-resolved studies point to a lower limit of 10(9) per second for the quenching rate. No quenching was observed upon metallation of two complementary octamers by Ru(phen)3(2+) and Rh(phen)3(3+) under conditions where the phen complexes do not intercalate. The stacked aromatic heterocycles of the DNA duplex therefore serve as an efficient medium for coupling electron donors and acceptors over very long distances.

read more

Citations
More filters
Journal ArticleDOI

Fluorescence Lifetime Measurements and Biological Imaging

TL;DR: The lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e via the loss of energy through fluorescence and other non-radiative processes and the average length of time τ is called the mean lifetime, or simply lifetime.
Journal ArticleDOI

Contemporary Issues in Electron Transfer Research

TL;DR: In this paper, a qualitative discussion of electron transfer, its time and distance scales, energy curves, and basic parabolic energy models are introduced to define the electron transfer process, and some of the important, challenging, and problematic issues in contemporary electron transfer research are discussed.
Journal ArticleDOI

Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes

TL;DR: In this article, a force microscope equipped with a conducting probe tip has been used to map simultaneously the structure and resistance of the portion of the material protruding from the macroscopic contact.
References
More filters
Journal ArticleDOI

Electron transfers in chemistry and biology

TL;DR: In this paper, the electron transfer reactions between ions and molecules in solution have been the subject of considerable experimental study during the past three decades, including charge transfer, photoelectric emission spectra, chemiluminescent electron transfer, and electron transfer through frozen media.
Journal ArticleDOI

Chemical and Electrochemical Electron-Transfer Theory

TL;DR: In this article, a review of electron transfer reactions is presented, focusing on the absence of bond rupture in the reaction step, which is a unique feature of purely electron-transfer reactions.
Journal ArticleDOI

Nature of biological electron transfer

TL;DR: Powerful first-order analysis of intraprotein electron transfer is developed from electron-transfer measurements both in biological and in chemical systems, finding selection of distance, free energy and reorganization energy are sufficient to define rate and directional specificity of biological electron transfer.
Journal ArticleDOI

Molecular light switch for DNA : Ru(bpy)2(dppz)2+

TL;DR: In this article, a transition-metal complex was used as a molecular light switch for double-helical DNA, which showed no photoluminescence in aqueous solution at ambient temperatures.
Related Papers (5)