scispace - formally typeset
Open AccessJournal ArticleDOI

Measurement of f(c→D∗+X), f(b→D∗+X) and Γcc¯/Γhad using D∗± mesons

K. Ackerstaff, +357 more
- 01 Jan 1998 - 
- Vol. 1, Iss: 3, pp 439-459
Reads0
Chats0
TLDR
In this article, a combination of several charm quark tagging methods based on fully and partially reconstructed mesons, and a bottom tag based on identified muons and electrons, was found to be the hadronisation fractions of charm and bottom quarks into hadronic mesons.
Abstract
The production rates of \({\rm D}^{*\pm}\) mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary \({\rm c\bar c}\) pairs in hadronic \({\rm Z}^0\) decays have been measured at LEP using almost 4.4 million hadronic \({\rm Z}^0\) decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed \({\rm D}^{*\pm}\) mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into \({\rm D}^{*\pm}\) mesons have been found to be \(\) The fraction of \({\rm c\bar c}\) events in hadronic \({\rm Z}^0\) decays, \(\Gamma_{\rm c\bar c}/\Gamma_{\rm had}=\Gamma({\rm Z}^0\to{\rm c\bar c}) / \Gamma({\rm Z}^0\to\rm hadrons)\), is determined to be \(\) In all cases the first error is statistical, and the second one systematic. The last error quoted for \(\Gamma_{\rm c\bar c}/\Gamma_{\rm had}\) is due to external branching ratios.

read more

Content maybe subject to copyright    Report

arXiv:hep-ex/9708021v1 16 Aug 1997
EUROPEAN LABORATORY FOR PARTICLE PHYSICS
CERN-PPE/97-093
18-July-1997
Measurement of
f(c D
+
X), f(b D
+
X) and
Γ
c¯c
/Γ
had
using D
±
Mesons
THE OPAL COLLABORATION
Abstract
The production rates of D
±
mesons in charm and bottom events at centre-of-mass energies
of about 91 GeV and the partial width of primary c
c pairs in hadronic Z
0
decays have
been measured at LEP using almost 4.4 million hadronic Z
0
decays collected with the
OPAL detector between 1990 and 1995. Using a combination of several charm quark
tagging methods based on fully and partially reconstructed D
±
mesons, and a bottom
tag based on identified muons and electrons, the hadronisation fractions of charm and
bottom quarks into D
±
mesons have been found to be
f (b D
+
X) = 0.173 ± 0.016 ± 0.012 and f (c D
+
X) = 0.222 ± 0.014 ± 0.014 .
The fraction of c
c events in hadr on ic Z
0
decays, Γ
c
c
/Γ
had
= Γ(Z
0
c
c)/Γ(Z
0
hadrons),
is determined to be
Γ
c
c
/Γ
had
= 0.180 ± 0.011 ± 0.012 ± 0.006 .
In all cases the first err or is s tatistical, and the second one systematic. The last error
quoted for Γ
c
c
/Γ
had
is due to external branching ratios.
Submitted to Zeitschrift f¨ur Physik C

THE OPAL COLLABORATION
K. Ackerstaff
8
, G. Alexander
23
, J. Allison
16
, N. Altekamp
5
, K.J. Anderson
9
, S. Anderson
12
,
S. Arcelli
2
, S. Asai
24
, D. Axen
29
, G. Azuelos
18,a
, A.H. Ball
17
, E. Barberio
8
, T. Barillari
2
,
R.J. Barlow
16
, R. Bartoldus
3
, J.R. Batley
5
, S. Baumann
3
, J. Becht luft
14
, C. Beeston
16
,
T. Behnke
8
, A.N. Bell
1
, K.W. Bell
20
, G. Bella
23
, S. Bentvelsen
8
, S. Bethke
14
, O. Bieb el
14
,
A. Biguzzi
5
, S.D. Bird
16
, V. Blobel
27
, I.J. Bloodworth
1
, J.E. Bloomer
1
, M. Bobinski
10
,
P. Bock
11
, D. Bonacorsi
2
, M. Boutemeur
34
, B.T. Bouwens
12
, S. Braibant
12
, L. Brigliadori
2
,
R.M. Brown
20
, H.J. Burckhart
8
, C. Burgard
8
, R. B¨urgin
10
, P. Capiluppi
2
, R.K. Carnegie
6
,
A.A. Carter
13
, J.R. Carter
5
, C.Y. Chang
17
, D.G. Charlton
1,b
, D. Chrisman
4
, P.E.L. Clarke
15
,
I. Cohen
23
, J.E. Conboy
15
, O.C. Cooke
8
, M. Cuffiani
2
, S. Dado
22
, C. Dallapiccola
17
,
G.M. Dallavalle
2
, R. Davis
30
, S. De Jong
12
, L.A. del Pozo
4
, K. Desch
3
, B. Dienes
33,d
,
M.S. Dixit
7
, E. do Couto e Silva
12
, M. Doucet
18
, E. Duchovni
26
, G. Duckeck
34
, I.P. Duerdoth
16
,
D. Eatough
16
, J.E.G. Edwards
16
, P.G. Estabrooks
6
, H.G. Evans
9
, M. Evans
13
, F. Fabbri
2
,
M. Fanti
2
, A.A. Faust
30
, F. Fiedler
27
, M. Fierro
2
, H.M. Fischer
3
, I. Fleck
8
, R. Folman
26
,
D.G. Fong
17
, M. Foucher
17
, A. F¨urtjes
8
, D.I. Futyan
16
, P. Gagnon
7
, J.W. Gary
4
, J. Gascon
18
,
S.M. Gascon-Shotkin
17
, N.I. Geddes
20
, C. Geich-Gimbel
3
, T. Geralis
20
, G. Giacomelli
2
,
P. Giacomelli
4
, R. Giacomelli
2
, V. Gibson
5
, W.R. Gibson
13
, D.M. Gingrich
30,a
, D. Glenzinski
9
,
J. Goldberg
22
, M.J. Goodrick
5
, W. Gorn
4
, C. Grandi
2
, E. Gross
26
, J. Grunhaus
23
, M. Grue
8
,
C. Hajdu
32
, G.G. Hanson
12
, M. Hansroul
8
, M. Hapke
13
, C.K. Hargrove
7
, P.A. Hart
9
,
C. Hartmann
3
, M. Hauschild
8
, C.M. Hawkes
5
, R. Hawkings
27
, R.J. Hemingway
6
, M. Herndon
17
,
G. Herten
10
, R.D. Heuer
8
, M.D. Hildreth
8
, J.C. Hill
5
, S.J. Hillier
1
, P.R. Hobson
25
, R.J. Homer
1
,
A.K. Honma
28,a
, D. Horv´ath
32,c
, K.R. Hossain
30
, R. Howard
29
, P. H¨untemeyer
27
,
D.E. Hutchcroft
5
, P. Igo-Kemenes
11
, D.C. Imrie
25
, M.R. Ingram
16
, K. Ishii
24
, A. Jawahery
17
,
P.W. Jeffreys
20
, H. Jeremie
18
, M. Jimack
1
, A. Joly
18
, C.R. Jones
5
, G. Jones
16
, M. Jones
6
,
U. Jost
11
, P. Jovanovic
1
, T.R. Junk
8
, D. Karlen
6
, V. Kartvelishvili
16
, K. Kawagoe
24
,
T. Kawamoto
24
, P.I. Kayal
30
, R.K. Keeler
28
, R.G. Kellogg
17
, B.W. Kennedy
20
, J. Kirk
29
,
A. Klier
26
, S. Kluth
8
, T. Kobayashi
24
, M. Kobel
10
, D.S. Koetke
6
, T.P. Ko kott
3
, M. Kolrep
10
,
S. Komamiya
24
, T. Kress
11
, P. Krieger
6
, J. von Krogh
11
, P. Kyberd
13
, G.D. Lafferty
16
,
R. Lahmann
17
, W.P. Lai
19
, D. Lanske
14
, J. Lauber
15
, S.R. Lautenschlager
31
, J.G. Layter
4
,
D. Lazic
22
, A.M. Lee
31
, E. Lefebvre
18
, D. Lellouch
26
, J. Letts
12
, L. Levinson
26
, S.L. Lloyd
13
,
F.K. Loebinger
16
, G.D. Long
28
, M.J. Losty
7
, J. Ludwig
10
, A. Macchiolo
2
, A. Macpherson
30
,
M. Mannelli
8
, S. Marcellini
2
, C. Markus
3
, A.J. Martin
13
, J.P. Martin
18
, G. Martinez
17
,
T. Mashimo
24
, P. attig
3
, W.J. McDonald
30
, J. McKenna
29
, E.A. Mckigney
15
, T.J. McMahon
1
,
R.A. McPherso n
8
, F. Meijers
8
, S. Menke
3
, F.S. Merritt
9
, H. Mes
7
, J. Meyer
27
, A. Michelini
2
,
G. Mikenberg
26
, D.J. Miller
15
, A. Mincer
22,e
, R. Mir
26
, W. Mohr
10
, A. Montanari
2
, T. Mori
24
,
M. Morii
24
, U. M¨uller
3
, S. Mihara
24
, K. Nagai
26
, I. Nakamura
24
, H.A. Neal
8
, B. Nellen
3
,
R. Nisius
8
, S.W. O’Neale
1
, F.G. Oakham
7
, F. Odorici
2
, H.O. Ogren
12
, A. Oh
27
,
N.J. Oldershaw
16
, M.J. Oreglia
9
, S. Orito
24
, J. alink´as
33,d
, G. asztor
32
, J.R. Pater
16
,
G.N. Patrick
20
, J. Patt
10
, M.J. Pearce
1
, R. Perez-Ochoa8, S. Petzold
27
, P. Pfeifenschneider
14
,
J.E. Pilcher
9
, J. Pinfold
30
, D.E. Plane
8
, P. Poffenberger
28
, B. Poli
2
, A. Posthaus
3
, D.L. Rees
1
,
D. Rigby
1
, S. Robertson
28
, S.A. Robins
22
, N. Rodning
30
, J.M. Roney
28
, A. Rooke
15
, E. Ros
8
,
A.M. Rossi
2
, P. Routenburg
30
, Y. Rozen
22
, K. Runge
10
, O. Runolfsson
8
, U. Ruppel
14
,
D.R. Rust
12
, R. Rylko
25
, K. Sachs
10
, T. Saeki
24
, E.K.G. Sarkisyan
23
, C. Sbarra
29
, A.D. Schaile
34
,
O. Schaile
34
, F. Scharf
3
, P. Scharff-Hansen
8
, P. Schenk
34
, J. Schieck
11
, P. Schleper
11
,
B. Schmitt
8
, S. Schmitt
11
, A. Sconing
8
, M. Schr¨oder
8
, H.C. Schultz-Coulon
10
, M. Schumacher
3
,
C. Schwick
8
, W.G. Scott
20
, T.G. Shears
16
, B.C. Shen
4
, C.H. Shepherd- Themistocleous
8
,
1

P. Sherwood
15
, G.P. Siroli
2
, A. Sittler
27
, A. Skillman
15
, A. Skuja
17
, A.M. Smith
8
, G.A. Snow
17
,
R. Sobie
28
, S. oldner-Rembold
10
, R.W. Springer
30
, M. Sproston
20
, K. Stephens
16
, J. Steuerer
27
,
B. Stockhausen
3
, K. Stoll
10
, D. Strom
19
, P. Szymanski
20
, R. Tafirout
18
, S.D. Talbot
1
,
S. Tanaka
24
, P. Taras
18
, S. Tarem
22
, R. Teuscher
8
, M. Thiergen
10
, M.A. Thomson
8
, E. von
orne
3
, S. Towers
6
, I. Trigger
18
, Z. Tocs´anyi
33
, E. Tsur
23
, A.S. Turcot
9
, M.F. Turner-Wa tson
8
,
P. Utzat
11
, R. Van Kooten
12
, M. Verzocchi
10
, P. Vikas
18
, E.H. Vokurka
16
, H. Voss
3
,
F. ackerle
10
, A. Wagner
27
, C.P. Ward
5
, D.R. Ward
5
, P.M. Watkins
1
, A.T. Watson
1
,
N.K. Watson
1
, P.S. Wells
8
, N. Wermes
3
, J.S. White
28
, B. Wilkens
10
, G.W. Wilson
27
,
J.A. Wilson
1
, G. Wolf
26
, T.R. Wyatt
16
, S. Yamashita
24
, G. Yekutieli
26
, V. Zacek
18
, D. Zer-Zion
8
1
School of Physics and Space Research, University of Birmingham, Birmingham B15 2TT, UK
2
Dipartimento di Fisica dell’ Universit`a di Bologna and INFN, I-4012 6 Bologna, Italy
3
Physikalisches Institut, Universit¨at Bonn, D-53115 Bonn, Germany
4
Department of Physics, University of California, Riverside CA 92521, USA
5
Cavendish Laboratory, Cambridge CB3 0HE, UK
6
Ottawa-Carleton Institute for Physics, D epartment of Physics, Carleton University, Ottawa,
Ontario K1S 5B6, Canada
7
Centre for Research in Particle Physics, Carleton University, Ot t awa, Ontario K1S 5B6,
Canada
8
CERN, European Organisation for Particle Physics, CH-1211 Geneva 23, Switzerland
9
Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago IL 60 637,
USA
10
Fakult¨at f¨ur Physik, Albert Ludwigs Universit¨at, D-79104 Freiburg, Germany
11
Physikalisches Institut, Universit¨at Heidelberg, D-69120 Heidelberg, Germany
12
Indiana University, Department of Physics, Swain Hall West 117 , Bloomington IN 47405,
USA
13
Queen Mary and Westfield College, University of London, London E1 4NS, UK
14
Technische Hochschule Aachen, III Physikalisches Institut, Sommerfeldstrasse 26-28, D-52056
Aachen, Germany
15
University College London, London WC1E 6BT, UK
16
Department of Physics, Schuster Laborato r y, The University, Manchester M13 9PL, UK
17
Department of Physics, University of Maryland, College Park, MD 20742, USA
18
Laboratoire de Physique Nucl´eaire, Universit´e de Montr´eal, Montr´eal, Quebec H3C 3J7,
Canada
19
University of Oregon, Department of Physics, Eugene OR 97403, USA
20
Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
22
Department of Physics, Technion-Israel Institute of Technology, Haifa 320 00, Israel
23
Department of Physics and Astronomy, Tel Aviv University, Tel Aviv 699 78, Israel
24
International Centre for Elementary Particle Physics and Department of Physics, University
of Tokyo, Tokyo 113, and K obe University, Kobe 657, Japan
25
Brunel University, Uxbridge, Middlesex UB8 3PH, UK
26
Particle Physics Department, Weizmann Institute of Science, Rehovot 7610 0, Israel
27
Universit¨at Hamburg/DESY, II Institut f¨ur Experimental Physik, Notkestrasse 85, D-22607
Hamburg, Germany
28
University of Victoria, Department of Physics, P O Box 3055, Victoria BC V8W 3P6, Canada
29
University of British Columbia, Department o f Physics, Vancouver BC V6T 1Z1, Canada
2

30
University of Alberta, Department of Physics, Edmonton AB T6G 2J1, Canada
31
Duke University, Dept of Physics, Durham, NC 27708-0305, USA
32
Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P O Box 49, Hungary
33
Institute of Nuclear Research, H- 4001 Debrecen, P O Box 51, Hungary
34
Ludwigs-Maximilians-Universit¨at M¨unchen, Sektion Physik, Am Coulombwall 1, D-85748
Garching, Germany
a
and at TRIUMF, Vancouver, Canada V6T 2A3
b
and Royal Society University Research Fellow
c
and Institute of Nuclear Resear ch, Debrecen, Hungary
d
and Department of Experimental Physics, Lajos Kossuth University, Debrecen, Hungary
e
and Department of Physics, New York University, NY 1003, USA
3

1 Introduction
The production of heavy quarks in the decay of the Z
0
boson and their hadronisation have been
the subject of considerable interest over the last few years. In particular the fractions with which
the Z
0
boson decays into quark pairs of flavour q have been studied extensively in Z
0
b
b
decays [1–4], in Z
0
c
c decays [5–8] a nd in light flavour events [9]. The fraction of bb events
in Z
0
decays has been measured with very good precision. To achieve this goal, very efficient
and pure bottom tag ging methods have been developed, resulting in samples of events that are
nearly free of non-bottom backgrounds. Significantly fewer and less precise measurements exist
of the equivalent quantity for c
c events or for light flavour events. In particular the selectio n of
a pure c
c sample has met with many difficulties, and the efficiencies and purities achieved by
charm tags are inferior to those for bottom tags. The reason for this is that charmed hadrons
are lighter and shorter lived than bottom hadro ns, and are similar enough to most light hadrons
to make a separation very difficult. However, the precise knowledge of the partial widths for
different flavours constitutes an important test of the predictions of the Standard Model, since
in lowest-order Born approxima tion the partia l Z
0
decay width to q
q, Γ
qq
, is related to the
coupling constants of the vect or and axial vector current, g
q
V
and g
q
A
:
Γ
q
q
= N
q
c
G
µ
m
3
Z
6π
2
((g
q
V
)
2
+ (g
q
A
)
2
) . (1)
Here G
µ
is the Fermi decay constant and m
Z
the Z
0
mass. The f actor N
q
c
= 3 denotes the
number of colours. Higher order electroweak and QCD corrections to the Z
0
propagator and q
q
vertex that modify Γ
qq
essentially cancel in the ratio Γ
qq
/Γ
had
except in the case of Z
0
bb,
where a small dependence o n the Higgs mass and on the precise value of the top quark mass
is introduced. The ratio Γ
q
q
/Γ
had
therefore is the preferred measurable quantity, for which
precise predictions exist in the context of the Standard Model for the quark flavours u,d,s and
c, almost independent of unknown quantities.
In this paper a measurement of the fraction of primary c
c pairs produced in the decays
of Z
0
bosons is presented. At the same time t he hadronisation fractions f (c D
+
X) and
f (b D
+
X) are measured. The analysis is based on the identification of charged D
±
mesons,
electrons and muons.
The hadronisation fractions f (c D
+
X) and f (b D
+
X) are measured using a double
tagging technique. To determine f (c D
+
X), charged D
±
mesons are sought in both event
hemispher es
1
. The hadronisation fraction f (b D
+
X) is determined in events tagged by a
hard lepton in one hemisphere and a D
±
in the other hemisphere. Comparing the number of
such double tagged events with the number of singly reconstructed D
±
mesons or leptons, the
hadronisation f ractions can be extracted with minimal model dependence and without explicit
knowledge of the D
±
or lepton reconstruction efficiencies.
The ratio o f the charm partial width to the total hadronic width, Γ
c
c
/Γ
had
, is determined
from the hadronisation f raction f (c D
+
X) and from a measurement of the total production
rate of D
±
mesons in Z
0
c
c events, Γ
c
c
/Γ
had
·f (c D
+
X). This rate is measured in this paper
using a particularly well understood D
±
decay mode, the decay
2
D
+
D
0
π
+
, D
0
K
π
+
.
Both the measurement of the hadronisation fraction and the measurement of Γ
c
c
/Γ
had
rely
heavily on the reconstruction of D
+
mesons using two different techniques. Therefore the
1
The plane separating the two hemispheres in an event is defined perpendicular to the thrust axis of the
event.
2
Charge conjugation is assumed throughout this paper.
4

Figures
Citations
More filters
Journal ArticleDOI

Precision electroweak measurements on the Z resonance

TL;DR: In this paper, the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP are reported.
Journal ArticleDOI

Organic metals and superconductors based on BETS (BETS = bis(ethylenedithio)tetraselenafulvalene).

TL;DR: The extended Hückel tightbinding band examinations of a series of molecular conductors with the networks of peripheral chalcogen atoms gave an important hint to develop new organic metals with stable 2-D cylindrical Fermi surfaces on the basis of multi-chalcogen π donor molecules.
Journal ArticleDOI

Charmed-Meson Fragmentation Functions with Finite-Mass Corrections

TL;DR: In this paper, the authors elaborate the production of single heavy-flavored hadrons in e + e − annihilation at next-to-leading order in the general-mass variable-flavor-number scheme.
Journal ArticleDOI

Inclusive charmed-meson production at the CERN LHC

TL;DR: In this paper, the authors present predictions for the inclusive production of D mesons at the CERN LHC in the general-mass variable-flavor-number scheme at next-to-leading order.
Related Papers (5)

Measurement of prompt charm meson production cross sections in [formula presented] collisions at [formula presented]

Darin Acosta, +607 more
Frequently Asked Questions (18)
Q1. What is the general strategy for the measurement of the hadronisation fractions?

The general strategy for the measurement of the hadronisation fractions is that a charm or bottom enriched sample is selected by applying the high purity charm or bottom tag to one hemisphere of the event, and then searching for D∗+ mesons in the opposite hemisphere using the more efficient, less pure tag. 

The resolution of secondary vertices depends on the fraction of tracks which use measurements from the silicon micro-vertex detector. 

The influence of the detector resolution on the tagging variables is studied in Monte Carlo by varying the resolutions in the tracking system by ±10% relative to values that optimally describe the data. 

From the number of D∗± mesons observed in the decay D∗+ → D0π+, D0 → K−π+ the multiplicity of D∗+ mesons in hadronic Z decays is measured to ben̄Z0→D∗+X = 0.1854 ± 0.0041 ± 0.0059 ± 0.0069 . 

The total contribution of these events to the exclusively tagged sample is found to be (0.2±0.1)%, where the error quoted is only due to Monte Carlo statistics. 

In total the relative error of the rate of partially reconstructed D∗+ mesons contributing to the signal is estimated to be 22% of the rate of partially reconstructed mesons, which contributes an error of 1.5% to the total rate measurement.• 

To ensure that the event is mostly contained in the sensitive detector volume, the absolute value of the cosine of the polar angle of the thrust axis with respect to the beam direction, | cos θthrust|, has to be smaller than 0.9. 

The number of tagged electron and muon candidates is determined to be 43 579, of which 4445 ± 64 do not originate in bottom decays. 

The shape of the p2t signal in bottom events is determined in data from the lepton-slow pion double tagged sample, which is about 90% pure in bottom decays. 

In bottom events the product branching ratio is determined to beΓbb/Γhad · f (b → D∗+X) B(D∗+ → D0π+) B(D0 → K−π+) = (1.334 ± 0.049) × 10−3 . 

Neglecting for simplicity any background from other flavours, the number of events of flavour q is given byNtag1 ∼ Γqq Γhad f (q → D∗+X) ǫtag1 , (2)where ǫtag1 is the efficiency to select an event of flavour q using the pure tag. 

The other decays contributing to the partially reconstructed sample are described by an additional exponential function, added to the parametrisation of the satellite decay. 

The multiplicity for heavy flavour decays in the Monte Carlo has been varied by reweighting simulated events,corresponding to the current experimental bounds of ±0.2 tracks for charm decays, and ±0.35 tracks for bottom decays [16]. 

The absolute contribution from the fakes is obtained by rescaling the fitted fake contribution by the ratio α of the number of background candidates in the sideband sample to that in the signal sample. 

From the shape of the fragmentation function the average mean scaled energy xD∗+ of D∗+ mesons in charm decays is determined to be 〈xD∗+〉c = 0.515 ± 0.002 ± 0.009 . 

The lifetimes of the weakly-decaying charmed hadrons D0 and D+ has been varied independently by ±0.004 ps for the D0, and ±0.015 ps for the D+ [22], corresponding to a total error of 0.4%.• 

The uncertainty due to mixing in the neutral B sector has been studied by varying the effective mixing parameter χeff within its error, or 0.5% of the final result.– 

The ratio Γqq/Γhad therefore is the preferred measurable quantity, for which precise predictions exist in the context of the Standard Model for the quark flavours u,d,s and c, almost independent of unknown quantities.